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1 Introduction 

The measured equation of invariance (MEI) was first introduced as a mesh truncation 
condition for the finite-difference (FD) or finite-element (FE) method in the analysis of 
open region electromagnetic scattering problems [I ] .  The method makes possible the 
truncation of the computation domain very close to the object surface while still 
maintaining the sparsity of the FDEE matrix. However, it has been reported that the ME1 
method fails to give accurate results when the electrical size of the scatterer becomes 
large and a fixed number of nodes are coupled in the ME1 [2]. Recently, Xu and Chen 
suggested that the accuracy of the ME1 solutions could be improved by coupling more 
nodes in the ME1 [3]. Unfortunately, adding more nodes in the ME1 results in the 
aggravation of the ill-conditioning of the corresponding matrix used for the solution of 
ME1 coefficients (called MEIC matrix) when sinusoidal functions are used as metrons. A 
consequence is that as the number of the coupled nodes increases, numerical integrations 
must be carried out with very high or even extremely high accuracy, which become 
impractically time-consuming and would completely destroy the efficiency of the original 
ME1 method. 

To overcome this difficulty, we choose 6 functions as metrons to generate ME1 
coefficients. For two-dimensional (2-D) scattering problems, 6 metrons are equivalent to 
line sources placed on the surface of the object. The most important advantage of 6 
metrons is that the corresponding measuring functions can be expressed analytically and 
no numerical integration is needed when computing the ME1 coefficients. Considering 
that finding the ME1 coefficients is the dominant part of the computation time consumed 
by the ME1 method, we expect to greatly reduce the computation burden by using 6 
functions instead of sinusoidal functions as metrons. Besides, F functions alleviate the ill- 
conditioning problem of the MEIC matrix. We have also found that the positioning of 
line sources must be investigated carefully in order to obtain convergent and accurate 
results. Our numerical practice shows that for geometry other than circular cylinders, 
uniformly distributed line sources do not always lead to convergent solutions as the 
number of coupled nodes increases.' In this paper, we propose non-uniform positioning of 
6 metrons around the object surface to guarantee stable and accurate solutions. Numerical 
results show the efficiency of the technique, especially in handling 2-D electrically large 
scattering problems. 
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2 Theory 

The ME1 method assumes that there exists a linear relation between the scattered field at 
a node on the mesh truncation boundary and those at its N neighbor nodes: 

&;Qi =o 
i=O 

where Q i  ( i=O, . . . , N ) is the scattered field at the i-th node. The ME1 coefficients U;  's 
are determined numerically by assuming certain surface current distributions (metrons) 
and evaluating the corresponding scattered fields (measuring functions) at the nodes. 
Sinusoidally distributed surface currents have been widely used as metrons, but they 
result in highly ill-conditioned matrix systems. This becomes even worse when one tries 
to increase the number of coupled nodes in the ME1 equation, as suggested in [3]. As a 
consequence, numerical integrations must be carried out with very high accuracy for 
cylinders of arbitrary cross section, which could be extremely time-consuming. The 
difficulty can be circumvented by using 6 functions as metrons. Varying the position of 6 
function on the object surface, we get Mlinearly independent metrons 

where Fm 's are surface position vectors. Each of the metrons is equivalent to a line source 
placed on the surface of the object in 2-D cases. The scattered fields produced by these 
line sources can be obtained analytically without numerical integration: 

.I,(?') = 6(7- ?,), m = l ," ' ,M (2) 

TE: =HzY = ~ C O S @ H , ( ~ ) ( ~ I <  4 -?,,,I). (4) 

In this way, we are able to establish the MEIC equations very quickly, which is especially 
favorable when the electrical size of the object becomes large. The use of 6 metrons also 
greatly alleviates the ill-conditioning phenomenon of the MEIC equations when N 
becomes large. For example, the condition number is about lo2' for sinusoidal metrons 
and 10' for 6 metrons when N=9. Furthermore, the condition number increases much 
more slowly with increasing N for 6 metrons than for sinusoidal metrons. 

Despite the simplicity of the 6 metron formulation, the positioning of the line sources 
demands careful considerations. Since we have found that uniformly distributed line 
sources fail to produce convergent results in some cases, non-uniform positioning of the 
line sources is proposed. In our numerical computation, the following non-uniform 
scheme is used: 

where P is the perimeter of the cylinder, M is an odd number, and L,  is the perimetric 
length of a particular line source on the surface with respect to the line source nearest to 
the boundary node. The non-uniformity is controlled by the parameter a .  Empirically, 
excellent solutions can be achieved by choosing a between 3 and 10. The distribution 
patterns for the uniform and non-uniform positioning are plotted in Fig. 1. 

In principle, N metrons are enough to generate N ME1 coefficients. Usually more 
metrons are used to guarantee more accurate and stable results. The resulting 
overspecified system is solved by regular least squares fitting. 
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3 Numerical Results 

The relationship between the accuracy of the ME1 solution and the number of coupled 
nodes N is shown in Fig. 2. The surface current density for a 501-diameter circular PEC 
cylinder in TE incidence is obtained with non-uniform positioning ( a  = 5.0) and N=5, 15, 
and 25. The numerical solutions progressively approach the analytical solution when N 
increases. Although the increase of N will result in more nonzero elements in the FD- 
ME1 matrix, they are still small portion of the total matrix elements. Thus, the sparsity of 
the FD-ME1 matrix and the efficiency of the ME1 method are still presenred. 

For the case of a rectangular cylinder illuminated by a TE plane wave, the 
convergence behaviors of the numerical results as N increases with uniform and non- 
uniform positioning of line sources are shown in Fig. 3(a) and Fig. 3(b), respectively. It is 
evident that the uniform positioning does not lead to convergent result, while the non- 
uniform positioning produces stable and accurate solutions with increasing N. 

Fig. 4 shows the surface current density around half perimeter of a 20A x 101 
rectangular PEC cylinder illuminated by a TM plane wave. Totally 2N+1 line sources and 
non-uniform positioning ( a  = 5.0) are used in the computation. The results provided by 
the ME1 method when N equals to 21 are in very good agreement with the moment 
method solution. 
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Fig. 1 Distribution pattern for (a) uniform and (b) non-uniform positioning. 
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Fig. 2 
d&dp'u, a =5.0, TE incidence. 
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Fig. 3 Surface current density on a 2.01 x 0.51 rectangular PEC cylinder, dx=dy=A/20, 
TE incidence. (a) Uniform positioning. (b) Non-uniform positioning, a =5.0. 
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Fig. 4 
cylinder, dx=dy=U20, a =5.0, TM incidence. 

Surface current density around half perimeter of a 201 x 101 rectangular PEC 
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