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Abstract—The method of moments (MOM) is implemented
to simulate scattering from two types of PEC objects: circular
cylinders and square cylinders. In order to gauge the accuracy
of the MOM algorithms used, an exact analytical solution is used
for the cylinder problem, and reference papers are used for the
square cylinders. The computational complexity of these methods
is also examined, with both a direct solver and an iterative solver.

I. INTRODUCTION

The Method of Moments (MOM) is a boundary element
method, a numerical method of solving linear partial differen-
tial equations in boundary integral form. It is often applied to
integral equations, where the kernel is a Green’s function, to
solve scattering problems involving complex objects [1, 2].

In this paper, the MOM is implemented to simulate scat-
tering from an obliquely incident plane wave onto 2-D PEC
cylinders. To gauge the performance of the MOM algorithm
with a circular cylinder geometry, results are compared to an
exact analytical solution. For the square cylinder, published
works are used to gauge the accuracy of the results. The
computational complexity and possible improvements for each
method are discussed and the strengths and weaknesses of the
various methods are discussed.

II. FORMULATION
A. Problem Statement

A plane wave is incident on a PEC cylinder invariant in
the z direction. Both circular cylinders of radius a and square
cylinders of side length 2a are simulated, as shown in Figures
1 and 2. The electric current density induced on the surface of
each cylinder is calculated, as is the bistatic echo width (radar
cross section or RCS) with respect to angle ¢. The analytical
solutions for scattering from circular cylinders for both TE,
and TM, polarizations are presented in the following section.
An analytical solution for scattering from a square cylinder is
not available; however, results from other works are presented
in later sections for comparison. The geometries of the
cylinders are defined such the incident wave hits the cylinder
at ¢ = 180°, as indicated in Figures 1 and 2.

B. Analytical Solution for Circular PEC Cylinders

The TE, case is derived first, in cylindrical coordinates.
The incident magnetic field can be written as an infinite sum
of Bessel functions [3],
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Fig. 1. Plane wave incident on a circular cylinder. The entire cylinder is
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Fig. 2. Plane wave incident on a square cylinder. The entire cylinder is

illuminated.

where Hj is the magnitude of the field and 6; is the incident
angle of the plane wave. By using Ampere’s equation, it can
be shown that
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where Ef) and Efz) can be derived from this relationship. The
sum of the incident and scattered fields must be equivalent to
the tangential field, and the scattered magnetic field can be
represented by

B =a.H, Y dHP (Bp) @)
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where H,(f) is the Hankel function and d,, is derived from
enforcing the boundary condition for the PEC: the tangential
electric field vanishes on the surface of the cylinder. From this
boundary condition, the following equation is derived:
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so that now, the tangential magnetic field can be derived as
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For the TM,, case, the induced surface current and bi-static
echo width are similarly derived.
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C. MOM Solution

1) TEz MFIE Solution: For a TE, propagating wave, the
magnetic field exists only in the z direction. Using the equiv-
alence principle and boundary conditions for the magnetic
field at the conductor surface [3], the magnetic field integral
equation can be formulated as
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where ¢ is the position along the surface of the scatterer and
t is the unit vector tangent to the surface.

To approximate the surface current Jg, the surface of the
PEC shape is segmented into N pieces. Pulse basis functions
are used such that within each segment, p,(t) = 1 if ¢ is

within cell n, and is 0 otherwise. This gives an expression for
the current in terms of a sum of subdomain basis functions:

N
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Using the point matching technique, which is equivalent to
using delta testing functions, we can form the method of
moments matrix equation as
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with the elements of the matrix equation being
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The limit for the self-term entry can be performed analytically
for flat cells so that Z,,,, is exactly -1/2; this simplification is
used in the implementation. This matrix equation is solved for
J, and these values are used to calculate the surface current
in (17). Once the current coefficients are known, the bi-static
echo width can be approximated by
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where w,, is the length of segment 7.

2) TEz EFIE Solution: Alternatively, an EFIE formulation
can be used for the TE, case. Using the same equivalence
principle and boundary conditions for the electric field, the
EFIE equation can be written as

%\ Einc

where the magnetic vector potential and electric scalar poten-
tial are, respectively,
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where J and p. are the surface current and charge density,
respectively.

If pulse basis functions are employed, the discontinuous
representation of the current leads to fictitious line charges
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between each cell. Therefore, a continuous basis function
must be used to represent the current. For this problem,
triangle basis functions were chosen. The current density can
be written in terms of these functions as

N
Ti(t) 2 jat(titaritn,tosr) (29)
n=1

The charge density inside the scalar potential can be written
as a combination of pulse functions:
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Using pulse basis functions, defined between ¢, 1,2 and
tm+1/2, the matrix equation elements are now
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The double integral in (32) is computationally expensive,
so an approximation is used for the testing process. One
approximation is given by [4]:
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This approximation reduces the double integral to a single
integral, making it computationally comparable to the TE
MFIE case.

Since the current is now represented in terms of triangular
basis functions, the radar cross section is written in terms of
an integral as
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3) TMz EFIE Solution: For the TM, case, it is known that
vV.-J = 0, so that the general EFIE can be written as [4]
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The pulse basis function as defined in the previous sections
is implemented so that .J,(t) is defined as with the TE MFIE
case. Substituting this into the expression for the incident
electric field,

—>inc

E, (kR) (39)

—JanJn/

celln

4]

The moment method impedance matrix equation elements are
now
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where z,,, and y,, are the center of the segment m. The bistatic
echo width can be calculated using
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IIT. RESULTS
A. Validation

The surface current and bi-static echo width for a circular
cylinder with radius 2\ are plotted for both the TE and
TM cases using a frequency equal to the speed of light
(approximately 30 MHz) and 1001 nodes. The results are
shown in Figures 3-6. These plots qualitatively show that the
MOM algorithms give accurate, physically sensible results.
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Fig. 3. Surface current of a circular cylinder with r = 2, for the TE case.
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Fig. 4. Bi-static echo width of a circular cylinder with r = 2\, for the TE
case.
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Fig. 5. Surface current of a circular cylinder with r = 2\, for the TM case.

B. Convergence Analysis

1) Error vs. Nodes: The accuracy of each of the three
MOM algorithms described above is evaluated for a circular
cylinder of radius 2\, with the frequency of the incident wave
being 1 GHz. The number of nodes is increased and the
relative error is calculated by comparing the surface currents
and bi-static echo width with the following equation:

Error = HIIWOM - Ranalytical”Q

(45)
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The results are shown in Figures 7 and 8. It is evident
that the TE EFIE is consistently less accurate than the TE
MFIE case; this is expected, since an approximation was used
for the double integral in the MFIE formulation. However,
without this approximation, the computational complexity
order increases by a factor of N. The TM EFIE and TE MFIE
algorithms exhibit comparable error.

2) Error vs. Frequency: Because the MOM algorithm is
sensitive to the frequency used, the current was simulated by
varying the frequency while keeping the radius of the cylinder
to be 2 m. The number of nodes was chosen to be 1001.

An additional was experiment was performed, so that the
radius of the cylinder was 2, varying with frequency.

3) Error vs. Radius: The relative error between the MOM
algorithms and the analytical solution was calculated while
the radius of the cylinder was varied. The frequency was
held constant at 1 GHz, with 1001 nodes used, as the radius
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Fig. 6. Bi-static echo width of a circular cylinder with r = 2, for the TM
case.
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Fig. 7. Relative error for the MOM TE solutions compared to the analytical
solutions, vs. number of nodes used in the cylinder discretization.
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Fig. 8. Relative error for the MOM TM solutions compared to the analytical
solutions, vs. number of nodes used in the cylinder discretization.
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Fig. 9. Relative error for the MOM solutions compared to the analytical

solutions for a static radius, vs. frequency of the incident plane wave.
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Fig. 10. Relative error for the MOM solutions compared to the analytical

solutions for a radius proportional to frequency, vs. frequency of the incident
plane wave.

was increased from 0.2\ to 20\. The results are shown in
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Fig. 11. Relative error for the MOM solutions compared to the analytical

solutions, vs. radius of the circular cylinder.

Figure 11. With the same radius, TE MFIE and TM EFIE
give essentially the same accuracy, with both performing better
than the TE EFIE algorithm. Generally, as the radius becomes
larger, the accuracy of all the algorithms is less accurate. This
is because the length of each element is increasing while the
wavelength is unchanged. For radii of larger than 4, the error
is too large to provide credible results.

C. Square results

Though an analytical solution does not exist for the scatter-
ing from a square cylinder, several papers have examined this
phenomena [5-10]. In order to verify the MOM code presented
here for both the TE and TM cases, the data from these papers
are extracted using data extraction software and plotted against
the MOM results.

1) TEz MFIE: The TE, MFIE code was verified by com-
paring to results published for a cylinder with half-width
r = A/(2m) [10]. In this paper, the surface current for half of
the illuminated cylinder are calculated. A comparison between
these reference results and MOM results is shown in Figure 12.
The results from this MOM algorithm line up very well with
the reference results.
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Fig. 12. Surface current on square cylinder, from TEz incident wave. There
were 193 nodes in the MOM code used, compared to an integral equation
reference solution.

2) TMz EFIE: The TM, EFIE code was verified by com-
paring to results published for a cylinder with half-width
r = A/(2m) [6]. This paper includes simulation results for
both the surface current density and the square root of the
RCS. These results are shown in Figures 13 and 14; again,
the MOM results appear to align very well with the published
results.

D. Computational Complexity

For the circular cylinder, the mesh is chosen to be uniform
(each segment equal in length); in conjunction with the sym-
metry of the geometry, the resulting Z-matrix is a complex
symmetric Toeplitz matrix. This artifact is very convenient, as
only the first row or first column of Z needs to be computed
and stored. For an n-point quadrature rule, each matrix element
takes O(n) operations and Hankel function evaluations for the
TE MFIE and TM EFIE methods; for the TE EFIE method, 6
integrals need to be computed for each matrix element, which
leads to a considerably larger computation time of O(6n). For
an m X m matrix, this leads to O(mn) operations in the
matrix fill section of the code. The symmetry in the matrix
is suitable for the Conjugate Gradient (CG) method. Because
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Fig. 13. Surface current on square cylinder, from TMz incident wave. There
were 233 nodes in the MOM code used, compared to an FDTD reference
solution.
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Fig. 14. RCS of square cylinder, from TMz incident wave. There were 233
nodes in the MOM code used, compared to an FDTD reference solution.

of the Toeplitz structure of Z, the matrix-vector multiplication
in the CG method can be simplified by fast Fourier Transform
methods; instead of O(m?) operations, the multiplication can
be done in O(m log(m)) operations. Thus, for small n, the total
complexity for circular cylinders is O(m log(m)) operations,
with a memory storage requirement of O(m).

For the square cylinder, the mesh is also chosen to be
uniform, but the resulting matrix does not have the same
Toeplitz structure. Since the the structure is still symmetric,
approximately half the elements in the matrix need to be
computed, leading to O(nm?/2) operations in the matrix
fill section. Because the matrix does not have a Toeplitz
structure, FFT methods can not be used to decrease the matrix-
vector product calculation time. For this geometry, the quasi-
minimal residual (QMR) method was used with incomplete
LU decomposition for preconditioning; for most matrices, the
iteration converged in less than 4 operations. The complexity
of QMR in this case is of O(km?), where k is the number of
iterations. For small k and n, this leads to a total complexity of

O(m?) operations.  The matrix solver time for each method
was calculated with a varying number of nodes. The results
are shown in Figure 15 for the circular cylinder and Figure 16
for the square cylinder. These plots both show that
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Fig. 15. Solver time vs. number of nodes for a circular cylinder with radius
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Fig. 16. Solver time vs. number of nodes for a square cylinder with half-
width 2.

E. Comments on sources of error

For the TE, EFIE method, triangle basis functions and
pulse testing functions are used to discretize the current and
form the Z-matrix. Since these functions are of higher order
than the pulse basis/delta testing functions used in the TE,
MFIE and TM, MFIE methods, one would think that the
TE, EFIE formulation would produce more accurate results.
However, since the double integral in (32) is approximated, the
accuracy of the resulting Z-matrix is compromised. Physically,
one can observe that the resulting current contains unwanted
oscillations when the curve should be smooth; as the number
of nodes increases, the approximation becomes better and the
oscillations reduce in intensity.

Although the TE, MFIE and TM, EFIE exhibit good
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convergence for the 2\ radius test cylinder, it is imperative
to note that for certain ratios between frequency and radius,
both the EFIE and MFIE formulations alone cannot handle the
scattering from the closed PEC structure. For these integral
equations, the eigenvalues of the integral operators are

ABFIETM _ %(nwka)Jn(kr)Hﬁz)(kr) (46)
AMFIETE _ %(jwka)Jn(kr)Hr(f)'(kr) (47)

where J, and H, are the nth order Bessel and Hankel
functions, respectively. It is obvious that the nth eigenvalue
disappears whenever kr is a zero of the nth order Bessel
function. This results in a non-unique solution, as any multiple
of the eigenfunction corresponding to that eigenvalue can be
added to the solution and still satisfy the equation. Internal
fields can also be considered solutions to the surface integral
equation; the addition of these fields results in the internal
resonance phenomenon. This can be observed in the frequency
sweep plots, as the relative error stays constant over the graph
except at the resonant frequencies.

IV. CONCLUSION

Three basic MOM algorithms are presented here: both the
EFIE and MFIE formulations for the TE, polarization, and
the EFIE formulation for TM, propagation. These are verified
by comparing with an analytical solution (for the circular
cylinder) or a reference publication (for the square cylinder).
Several experiments were performed with the circular cylinder
algorithms to explore the accuracy for different problems, as
well as the computational complexity of the methods with and
without iterative solvers.

The numerical experiments show that there is a limit to the
accuracy of the solvers, as the size of the object becomes too
large, or the wavelength becomes too small. Also, the internal
resonance phenomena was demonstrated.
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