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On Applicability of the Integral Equation Formulation of

the Measured Equation of Invariance to 2D Scattering

Objects

Masanobu HIROSE†, Masayasu MIYAKE†, Jun-ichi TAKADA††, and Ikuo ARAI†††, Members

SUMMARY This paper shows the applicability of the in-
tegral equation formulation of the measured equation of invari-
ance (IE-MEI) to two-dimensional dielectric scatterers. That is,
a relationship between the scattered electric and magnetic fields,
which is derived from the new formulation of the IE-MEI, is ap-
plicable to lossless dielectric materials as well as perfect electric
conductors (PEC). In addition, we show that the IE-MEI does
not suffer from internal resonance problems. These two facts are
validated by numerical examples for a circular cylinder and a
square cylinder illuminated by Transverse Magnetic (TM) plane
wave or a TM line source very close to the scatterers. The numer-
ical results calculated by the IE-MEI agree well with the ones by
moment methods that employ combined field formulations with
exact boundary conditions.
key words: IE-MEI, 2D scatterer, internal resonance, circular

cylinder, square cylinder

1. Introduction

The measured equation of invariance (MEI) is used as
an efficient mesh truncation condition for the finite dif-
ference (FD) method or the finite element (FE) method
since Mei et al. [1] have been proposed this method.
Because the MEI makes the truncation boundary very
close to the surface of a scattering object, the problem
size of the FD or the FE equation can be reduced dras-
tically. In spite of some debates on the postulates of the
MEI [2]–[4], the MEI has been applied to many kinds of
problems, such as static problems [5], [6], 3-D dynamic
problems [7], [8], and lossless scattering problems [9]–
[12].

In contrast to the MEI combined with the FD or
FE formulation, an integral equation formulation of the
MEI (IE-MEI) for PEC has been derived recently by
Rius et al. [13]–[15]. From a reciprocity theorem and
a postlate of existence of local electric and magnetic
current sources on the surface of a scatterer, the re-
lationship between the adjacent scattered electric and
magnetic fields on the surface is expressed by two cyclic
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M -diagonal matrices, the bandwidth M of which is 3
typically. This relationship can be transformed to the
original MEI for the FD formulation. The matrices are
calculated from the same procedure in the original MEI.
Using the boundary condition of the PEC or Impedance
boundary conditions for lossy scatterers [16], [17], the
current induced on the surface is calculated by invert-
ing one of the matrices. Therefore high efficient com-
putation with less memory can be achieved.

The original IE-MEI requires the ambiguous as-
sumption that some local sources make the reaction in-
tegral approximately zero. Intuitively, the electric and
magnetic line current sources very close to the PEC
induce the electric current on the surface. If these cur-
rents can be considered as the local sources, the as-
sumption will be valid. A new formulation of the IE-
MEI makes us believe that the assumption is valid as
explained above.

Using a reciprocity theorem, we have derived the
new IE-MEI different from the original IE-MEI [17].
The interpretation of the new formulation makes the
existence of the local sources plausible and indicates
that the relationship between the scattered electromag-
netic fields, which is derived from the IE-MEI, is appli-
cable to arbitrary material objects; the relationship of
the IE-MEI can be also applied to lossless objects as
well as lossy or PEC objects. As anther merit of the
IE-MEI, we have found that the IE-MEI does not suffer
from the internal resonance problems.

To verify these features mentioned above, we con-
sider numerical examples of scattering from a circular
cylinder and a square cylinder for PEC and a lossless
material. They are illuminated by a Transverse Mag-
netic (TM) plane wave (far field illumination) and a
TM electric line source very close to the cylinders (near
field illumination). The verification of the relationship
of the IE-MEI for lossless medium is done by the com-
parison of the electric currents: one is calculated by the
method of moments (MoM), which employs combined
integral equations for interior and exterior regions [18];
the other is calculated by the relationship of the IE-
MEI combined with the magnetic current derived by
the MoM. For internal resonance problems, compari-
son is made between the numerical results calculated
by the IE-MEI and by the MoM employing the com-
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bined field integral equation to show the validity.
In the next section, we explain the new formulation

of the IE-MEI and the implication of the new formula-
tion. In Sect. 3, numerical examples are given to show
that the IE-MEI does not suffer from internal resonance
problems and that the relationship of the IE-MEI is ap-
plicable to lossless objects. Finally, we summarize the
results and comment on the further studies.

2. Integral Equation Formulation of the MEI

2.1 New Formulation of the IE-MEI

Since the detailed derivation of the new formulation of
the IE-MEI is given in [17], we explain only the outline
for readers’ convenience to follow the discussion below.
Let us consider the scattering problem in Fig. 1. C is
the boundary of a scatterer region S1 that is charac-
terized by permittivity ε1, conductivity σ1, and per-
meability µ1. The exterior region S of S1 is a homo-
geneous and isotropic medium characterized by ε and
µ. The scattered electric and magnetic fields (Es, Hs)
are represented by the equivalent surface electric and
magnetic sources (Js, Ms) on C, from the exterior in-
tegral representation [18]. As in Fig. 2, let some electric
and magnetic sources (Jh, Mh) exterior to S2 produce
(Eh, Hh) in the presence of S2. S+ is included in S
and bounded by C+. S+ shrinks to S after taking the
limit. To derive the new integral formulation of the IE-
MEI, we assume three conditions: 1) S2 has the same

Fig. 1 Incident fields Einc and Hinc induce the equivalent
surface currents Js and Ms on C, which produce the scattered
fields Es and Hs.

Fig. 2 Jh andMh in S+ produce the total fields Eh and Hh

in the presence of S2.

shape as S1; 2) the exterior region S and S+ have the
same material characteristics for (Js, M s) and (Jh,
Mh); 3) (Jh, Mh) exist in S+ excluding C+.

Applying the reciprocity theorem to two field-
source pairs, (Es, Hs) by (Js, M s) and (Eh, Hh)
by (Jh, Mh), in the exterior region S+, and taking the
limits as C+ tends to C, we finally arrive at the new
integral equation formulation as∫

C

{
Es・(n × Hh) − Hs・(Eh × n)

}
dl′

+
∫

S

(Es・Jh − Hs・Mh)dS′ = 0 (1)

Note that material parameters in S1 and S2 are
not specified through the derivation of Eq. (1). Then
Eq. (1) is applicable to arbitrary material objects. That
is, the IE-MEI can be applied to arbitrary materials.

To derive a relationship of the IE-MEI from
Eq. (1), we need one postulate: there exist the line
current sources (Jh, Mh) and the equivalent surface
currents n×Hh, Eh×n that are confined locally in the
small regions. This postlate is related to the existence
of the local linear equation and the invariant to the field
of excitation in the MEI [1]. Although the assumption
cannot be proved mathematically at present, it is ex-
plained intuitively as follows.

If S2 is a PEC and (Jh , Mh) are the line current
sources very close to the PEC, then the induced elec-
tric surface current n×Hh on the PEC has very high
peaks at the very proximity to (Jh, Mh) in its absolute
value. Therefore an appropriate combination of the line
current sources will induce the electric surface currents
that are approximately confined in the very small re-
gions. These sources and surface currents as a whole is
a candidate of the local sources and equivalent surface
currents in the postlate.

2.2 Relationship between the Scattered Electric and
Magnetic Field

From the assumption of the existence of the local
sources and equivalent surface currents, Eq. (1) can be
approximated as∫

C0

(Es・J t
h − Hs・M t

h)dl′ = 0 (2)

where C0 is the local portion of C, in which the equiv-
alent currents are essentially non-zero. C0 is also the
closest portion to (Jh , Mh), i.e. the sources can be
approximated as if they are on C0 owing to the conti-
nuity of Es and Hs. (J t

h , M t
h) are the total electric

and magnetic currents. This equation is the IE-MEI
and equivalent to Eq. (4) in [13] in its meaning when
the residual R=0 in [13].

Following the procedure by Rius et al. [13], we
obtain the relationship among M consecutive nodes.
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we show the procedure briefly in the following.
Let us divide C into N segments of the equal length

h to discretize Eq. (2) and make N nodes along C. The
sources and equivalent surface currents along C0 cen-
tered at node n are expanded into M pulse functions
as

J t
h,n(l) =

m=n+M−1
2∑

m=n−M−1
2

J t
h,n(lm)

∏
(l − lm)

(3)

M t
h,n(l) =

m=n+M−1
2∑

m=n−M−1
2

M t
h,n(lm)

∏
(l − lm)

where l is the arc length along C, (J t
h,n(lm), M t

h,n(lm))
are the total electric and magnetic current values at lm,
and the pulse function is given by

∏
(l − lm) =

{
1 if |l − lm| < h/2
0 otherwise (4)

Substituting Eq. (4) into Eq. (2) and approximating
(Es, Hs) as the values at lm, we obtain

m=n+M−1
2∑

m=n−M−1
2

[anm・Es(lm) − bnm・Hs(lm)] = 0 (5)

for node n, where anm=hJ t
h,n(lm) and bnm=hM t

h,n

(lm). Equation (5) is equivalent to Eq. (7) in [13] when
R=0. For TM wave, anm and Es have only the z-
component, bnm and Hs have only the l-component.
Then Es

z(lm) and Hs
l (lm) are used for the scattered

electric and magnetic fields in Eq. (5). Therefore,
Eq. (5) is written concisely as

AEs
z −BHs

l = 0 (6)

where A and B are cyclic M -diagonal matrices, ele-
ments of which are given by anm, bnm respectively. A
cyclic M -diagonal matrix is a band-like matrix where
each row has a specified number M of nonzero elements
around the diagonal element and the positions of the
elements are cyclic in the row. Es

z , Hs
l are the column

vectors defined as [Es
z(l1),. . ., Es

z(lN )]T , [Hs
l (l1), . . .,

Hs
l (lN )]T respectively. The bandwidth of A and B is

M (typically 3) and not depending on the number of
division N (the number of unknowns). Therefore the
number of nonzero elements of the matrices (memory
requirement) is proportional to N and the sparsity of
the matrices increases as N increases. These features
are the great advantages in the IE-MEI. Similar rela-
tionship also holds for TE waves.

The matrices A and B can be obtained by follow-
ing the procedure by Rius et al. [13]. Let us assume
currents on C (called metrons) which may be induced

by certain excitations. Usually periodic functions con-
forming on the entire C are used as the metrons. Then
calculate Es and Hs (called measuring functions) at
lm for node n, radiated by the metrons and insert these
into Eq. (5). Finally, having determined the elements
anm and bnm by the least square method, we obtain
the matrix equation (6).

Internal resonance problem is avoided for PEC
because the unique solution is obtained thorough the
boundary conditions and the relationship. On the other
hand, the problem may occur for a lossless object be-
cause the relationship can determine only either of the
equivalent electric or magnetic surface current: the
other can be obtained by the relationship even when
the former current is contaminated by a resonance so-
lution of the integral equations. However those currents
may produce the correct external field in the same way
as a certain resonant current on PEC produces an exact
external field.

2.3 Implication of the Relationship

As pointed out previously, the same elements anm and
bnm in the relationship of Eq. (5) are applicable to ar-
bitrary material object. This is because the material
characteristics of the object to be analyzed are not con-
sidered to derive the relationship of Eq. (5). This means
that anm and bnm are completely determined only by
the shape of the object, not by the material characteris-
tics: these elements are invariant to the material char-
acteristics of the scattering object. Therefore metrons
of only electric type are sufficient to determine the ele-
ments in contrast to the papers [9], [11] where metrons
of both electric and magnetic types are used.

The reason to use metrons of both types in [9],
[11] is stated on the right side of page 902 in [9] as fol-
lows: “If the MEI is valid for the field values produced
by any electric and magnetic currents, respectively, it
will be valid for the total field values produced by any
combination of electric and magnetic currents.” Before
we have derived the new formulation of the IE-MEI, we
had also thought that metrons of both electric and mag-
netic types had to be used to get the elements. However
the new formulation indicates that once the elements
are determined for a PEC, the same elements are used
to analyze an arbitrary scattering material with the
same shape of the PEC. Indeed, no difference of the
final results have been detected when we used metrons
of electric type and metrons of both types. Therefore
metrons of only electric type are sufficient for arbitrary
material problems because metrons of only electric type
are used in PEC problems.

3. Numerical Examples

To show that the IE-MEI does not suffer from the inter-
nal resonance problems, we calculate a TM scattering
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from a PEC circular cylinder, and from a PEC square
cylinder: the radius of the circular cylinder and the
width of the square cylinder are selected as the ones
that cause the internal resonance problems in the elec-
tric field integral equation (EFIE) or in the magnetic
field integral equation (MFIE). Next, to show the va-
lidity of the IE-MEI for arbitrary material objects, we
calculate the TM scattering from the cylinders with
a lossless dielectric material: the IE-MEI is already
shown to be applicable to PEC [13]–[15] and highly
lossy materials [16], [17].

In comparison of the numerical results by the IE-
MEI and the MoM, we use two kinds of the MoM that
are derived from combined field integral equations with
the exact boundary conditions for PEC or lossless ob-
jects, and that are free from the internal resonance
problems [18]: In the MoM for PEC, the EFIE and
the MFIE are combined at the same rate (p=0.5 in
Eq. (3.345) of [18]); In the MoM for lossless objects, the
interior EFIE subtracted from the exterior EFIE and
the interior MFIE subtracted from the exterior MFIE
are used at the same time (Eq. (4.66) in [18]). Both
MoMs are denoted as the C-MoM in the following dis-
cussion.

In the following examples, we use periodic func-
tions written by

ej 2π
N p for p = −np, . . . , 0, . . . ,+np (7)

as metrons. np is determined following the guide line
given by Rius et al. [13] as

np = kRmaxχ (8)

where Rmax is the radius of the smallest circular cylin-
der containing the whole of the scatterer and χ is a coef-
ficient that ranges from 1.05 to 1.3. We found that the
maximum value not exceeding χ=1.3 brings the best re-
sults for many problems: this is explained by the cutoff
regions of Bessel functions [19].

The incident fields in the examples are given by
TM electric line sources at two kinds of distances from
the cylinders: one corresponds to a plane wave; the
other to a near field. The electric line current source of
the amplitude 1/(2Hnorm

l ) produces the electric field
Einc

z and the magnetic field Hinc
l at position ρ as

Einc
z (ρ) =

−kη

4
H
(2)
0 (k|ρ− ρexc|)
2Hnorm

l

Hinc
l (ρ) =

j

4
∂H

(2)
0 (k|ρ− ρexc|)

∂n
2Hnorm

l

(9)

where the ρexc = (−a − d, 0) is the position of the
source, η is the intrinsic impedance of the surround-
ing medium, and n is the unit vector outwardly normal
to the surface of the cylinder. The factor 1/(2Hnorm

l )

is defined as

Hnorm
l =

j

4
∂H

(2)
0 (k|ρmin − ρexc|)

∂n
(10)

where ρmin is the point on the surface at which the
distance between the source and the surface becomes
minimum. Then the induced current (the normalized
current) at the point would be 1 if approximation of
physical optics would hold.

3.1 Internal Resonance Problems

To show that the IE-MEI does not suffer from internal
resonance problems, we consider the PEC scattering
problems. First, let us consider the problem of a PEC
circular cylinder as in Fig. 3. The radius a is taken
as 1.1166 wavelength. This radius causes the internal
resonance of TM12 and TE02 modes.

Let us consider the case for TM plane wave illu-
mination (d = infinity). Figure 4 shows the normalized
current distributions calculated by the IE-MEI with
PEC boundary condition and the C-MoM. In the IE-
MEI, M=3, np=9 (due to Eq. (8)), and the number

Fig. 3 A circular cylinder with the radius a=1.1166λ is illumi-
nated by an electric line current source situated at the position
(−a − d, 0).

Fig. 4 The normalized electric currents on the PEC circular
cylinder illuminated by the TM plane wave. The normalized
distance is the length along the boundary of the circle, divided
by the total length while the start point being at the position
(a,0) in Fig. 3. Abs, Re, and Im mean the absolute value, real
part, and imaginary part of the currents respectively.
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Fig. 5 The normalized electric currents on the PEC circular
cylinder illuminated by the TM near field source (d = 0.1λ).

of unknowns N=128 are used. To achieve the conver-
gence of the currents in the C-MoM, N=512 is used
in all calculations below. Excellent agreement of both
results is attained. The results were also verified with
the analytical solutions by series expansion solutions in
Chapter 1 of [18].

Next, consider the current distributions on the cir-
cular cylinder illuminated by a TM electric line source
in the very proximity to the cylinder (d = 0.1 wave-
length). Figure 5 shows the results calculated by both
methods where the calculation parameters are the same
as Fig. 4 except the distance d. As a whole, those results
agree well except slight discrepancy appearing around
the right front of the source of the excitation. This is
because the matrices A and B used in this calculation
are not good approximation of Eq. (6) for this case: the
highest order of the metrons to get the matrices is too
low to approximate the current that has a sharp peak
as in Fig. 5. However, owing to a far field quantity, no
appreciable error was found in the antenna pattern that
is the sum of the scattered field by the surface current
and the direct field from the excitation source.

Second, let us consider a square cylinder in Fig. 6
where the excitation sources are along the line that
passes through the origin and makes an angle of 135
degrees respect to the x-axis. The square cylinder is
taken as an example with sharp corners. The half width
is set to be 1.0607 wavelength, which causes the inter-
nal resonance of TM33 and TE33 modes. Figure 7 rep-
resents the normalized current distributions calculated
by the IE-MEI and the C-MoM, in the far field illumi-
nation. In the IE-MEI, M=3, np=12 (due to Eq. (8)),
and N=128 are used. The converged current by the
C-MoM where N = 512 is also shown. The agreement
of both currents is good except at the corners. How-
ever the errors are so small that no difference in the
scattering cross sections was found.

Figure 8 shows the normalized current distribution
when the excitation source is very close to one of the
corners (the distance d = 0.1 wavelength). In this case,

Fig. 6 A square cylinder with the width 2a (a=1.0607λ) is illu-
minated by an electric line current source situated at the position
(−a − d/

√
2, a + d/

√
2).

Fig. 7 The normalized electric currents on the PEC square
cylinder illuminated by the TM plane wave. The normalized
distance is the length along the boundary of the square, divided
by the total length while the start point being at the position
(a,0) in Fig. 6.

Fig. 8 The normalized electric currents on the PEC square
cylinder illuminated by the TM near field source (d = 0.1λ).
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larger errors than those for the circular cylinder are
observed: these errors affect the side lobe level (below
about −20 dB) of the antenna pattern.

From these figures, it is concluded that the IE-MEI
for PEC is applicable to 1) the wide range of the dis-
tances between the source and the scatterer from the
short distance of about 0.1 wavelength to the infinite
distance, and 2) the shapes that cause the internal res-
onance problems when using the EFIE or the MFIE
equation.

3.2 Application to Lossless Material Scatterers

To check whether Eq. (6) holds for lossless materials, we
consider the circular and square cylinders with relative
permittivity 4, the sizes of which are the same as those
of the PEC cylinder. In lossless cases, different from
PEC cases, the relationship of Eq. (6) cannot determine
both of the equivalent electric and magnetic currents
simultaneously. Therefore we verify Eq. (6) by compar-
ing the equivalent electric currents that are calculated
by the C-MoM and Eq. (6) combined with the equiva-
lent magnetic current derived by the C-MoM. That is,
first, we calculate the equivalent electric and magnetic
currents (Jz,C−MoM , Ml,C−MoM ) by the C-MoM. Then
the equivalent magnetic current Ml,C−MoM is inserted
into Eq. (6) to obtain another equivalent electric current
Jz,IE−MEI as that of the IE-MEI. That is, Jz,IE−MEI

is given by

Jz,IE−MEI = Hinc
l +B−1A(Ml,C−MoM−Einc

z )(11)

where we use the relations Jz = Hs
l + Hinc

l and Ml =
Es

z +Einc
z . Note that Eq. (11) turns out to be the elec-

tric current on the PEC if Ml,C−MoM = 0. In the
following examples, all paremeters such as M , np ,N in
the IE-MEI and N in the C-MoM are the same as in
the PEC cases.

Let us consider the TM plane wave cases first.
Figure 9(a) shows the normalized equivalent electric
currents on the circular cylinder illuminated by the
TM plane wave given by Eq. (9). Both currents agree
well over the perimeter of the cylinder. As expected,
the scattering cross sections calculated by (Jz,C−MoM ,
Ml,C−MoM ) and (Jz,IE−MEI , Ml,C−MoM ) also agree
well as in Fig. 9(b) because scattering cross section is
one of the far field quantities. The scattering cross sec-
tions σTM (robs) toward the unit vector robs is given by
Section 2.7.2 in [18]

σTM (robs) =
4|F (robs)|2

k

F (robs)=
kη

4

∫
C

(
− Jfar

z (l′)

+
Mfar

l (l′)
η

(robs・n′)ejk�′・robs

)
dl′

(12)

(a)

(b)

Fig. 9 The lossless circular cylinder illuminated by the TM
plane wave as in Fig. 3. The relative permittivity is 4. (a) The
normalized electric currents. (b) The scattering cross sections.

The superscript far means the quantity calculated by
the incident electric field being Einc = e−jk�p・� (not
the one given by Eq. (9)), where ρp is the unit vector
of the propagating direction.

Figure 10(a) represents the normalized equivalent
electric currents on the square cylinder illuminated by
the TM plane wave as in Fig. 6. The errors are seen
around the corners as in the PEC case. However the
errors become large around the shadow regions where
the normalized distance is from −0.125 to 0.125. This
is probably because the currents vary too rapidly for
the metrons to represent the currents. In fact, as seen
in Fig. 10(a) and other figures below, the electric cur-
rent in the shadow regions varies more rapidly than
the current in the illuminated region where the nor-
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(a)

(b)

Fig. 10 The lossless square cylinder illuminated by the TM
plane wave as in Fig. 6. The relative permittivity is 4. (a) The
normalized electric currents. (b) The scattering cross sections.

malized distance is from 0.125 to 0.375. However, as in
Fig. 10(b), the scattering cross sections calculated by
the both methods agree well because far field quanti-
ties are less sensitive to the errors of the currents.

Next consider the TM near field illumination. Fig-
ure 11(a) shows the normalized equivalent electric cur-
rents on the circular cylinder illuminated by the TM
near field source (d = 0.1 wavelength) as in Fig. 3. The
amplitude calculated by the IE-MEI is slightly larger
than that by the MoM. However the shapes of the cur-
rents agree well as a whole. Then, the antenna patterns
agree well as depicted in Fig. 11(b) because the antenna
patterns are far field quantities. The antenna gain pat-
tern is defined as

(a)

(b)

Fig. 11 The lossless circular cylinder illuminated by the TM
near field source (d = 0.1λ) as in Fig. 3. The relative permittivity
is 4. (a) The normalized electric currents. (b) The antenna
patterns.

G(robs) ≡

|Efar
z |2
2η
Pout

2πρfar

=
kη

8Pout
|F (robs)|2 (13)

where

F (robs) =

{
− ejkrobx・�exc

2Hnorm
l

+
∫

C

[
− Jz(l′)

+
Ml(l′)
η

(robx・n)
]
ejkrobx・�′

dl′

}
(14)

Efar
z is the electric field at the distance ρfar in the far

zone, and robs is the unit vector directing the observa-
tion point [17].
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(a)

(b)

Fig. 12 The lossless square cylinder illuminated by the TM
near field source (d = 0.1λ) as in Fig. 6. The relative permittivity
is 4. (a) The normalized electric currents. (b) The antenna
patterns.

Figure 12(a) shows the normalized equivalent elec-
tric currents on the square cylinder illuminated by the
TM near field source (d = 0.1 wavelength) as in Fig. 6.
In contrary to the circular cylinder, the both currents
agree except large difference around 0.375 of the nor-
malized distance, which corresponds to the corner in
the right front of the line source. This difference causes
pattern error in the shadow region (from 0◦ to 45◦ and
from 225◦ to 360◦) as in Fig. 12(b): the peak error of
the current around the corner decreases the original
pattern level in the shadow region by canceling each
other.

4. Conclusion

We have showed that the integral equation formulation

of the measured equation of invariance has two striking
features: 1) solutions for PEC are free from internal
resonance problems; 2) the same relationship of the IE-
MEI holds for arbitrary material scatterers.

As for internal resonance problems for PEC, we
have considered a circular cylinder with TM12 internal
resonance mode as well as TE01 mode and a square
cylinder with TM33 internal resonance mode as well as
TE33 mode. We have compared the currents, scattering
cross sections, and the antenna patterns calculated by
the IE-MEI with the boundary condition for PEC and
the combined-field MoM that does not suffer from the
internal resonance problems. These results have shown
that the currents by the IE-MEI deviate slightly from
the ones by the C-MoM around the corners and the re-
gions where the currents vary rapidly, and that far field
quantities such as scattering cross sections and antenna
patterns agree well. Therefore, the numerical results
have shown that the IE-MEI for PEC gives the unique
solution equal to the true solution approximately.

The new formulation of the IE-MEI indicates that
the local linear relationship of the scattered electromag-
netic fields holds for scattering problems with arbitrary
materials. Then, the same relationship is applicable
to the scattering problems with lossless objects whose
shape is the same as that of the PEC object. Numerical
examples of a circular cylinder and a square cylinder
with relative permittivity of 4 have verified the fact,
where we have compared the equivalent electric cur-
rents and the far field quantities given by the IE-MEI
and the MoM that uses the interior and exterior EFIEs
and MFIEs. The errors of these quantities have the
same features as those in the PEC cases. Combining
the new results with the previous results [13]–[17] that
the IE-MEI can be applied to highly lossy objects as
well as PEC objects, we have found that the relation-
ship of the IE-MEI is applicable to arbitrary material
scatterers.

In the discussion of losssless scattering, we have
proved only the relationship of the IE-MEI and been re-
quired to know either of the equivalent electric or mag-
netic current by another method. Therefore to solve
both currents only by the IE-MEI is our major subject
to be left.

On the other hand, owing to the implication of
the new formulation, the relationship of the IE-MEI
can be used as the boundary condition around an arbi-
trary region that contains any number of materials. In
addition, the relationship is represented by two cyclic
M -diagonal matrices whose bandwidth M is typically
3. Therefore, efficient boundary termination can be
achieved by using this relationship. We will demon-
strate the effectiveness in the forthcoming paper.

Moreover, since the new formulation of the IE-MEI
has the possibility to be extended to three-dimensional
scattering problems, we are now studying the extension.
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