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The objective of this paper is to extend computational fluid 
dynamics (CFD) based upwind schemes to solve numerically the 
Maxwell equations for scattering from objects with layered non- 
metallic sections. After a discussion on the character of the Max- 
well equations it is shown that they represent a linearly degenerate 
set of hyperbolic equations. To show the feasibility for applying 
CFD-based algorithms, first the transverse magnetic (TMI and the 
transverse electric (TE) waveforms of the Maxwell equations are 
considered. A finite-volume scheme is developed with appropriate 
representations for the electric and magnetic fluxes at a cell inter- 
face, accounting for variations in material properties in both space 
and time. This process involves a characteristic subpath integra- 
tion known as the “Riemann solver.“ An explicit Lax- Wendroff 
upwind scheme, which is second-order accurate in both space and 
time, is employed to solve the TM and TE equations. A body-fitted 
coordinate transformation is introduced to treat arbitrary cross-sec- 
tioned bodies with computational grids generated using an elliptic 
grid solver procedure. For treatment of layered media, a multizonal 
representation is employed satisfying appropriate zonal boundary 
conditions in terms of flux conservation. The computational solu- 
tion extending from the object to a far-field boundary located a 
few wavelengths away constitutes the near-field solution. A Green‘s 
function based near-field-to-far-field transformation is employed to 
obtain the bistatic radar cross section (RCS) information. Results 
are presented for a number of two-dimensional objects with lay- 
ered structures for both continuous wave (single-frequency, time 
harmonic) and transient (broad-band frequency response) cases. 
The time-domain solver also provides a unique capability for 
including nonlinear and time-varying material properties. 

I. INTRODUCTION 

The radar return from complex structures has tradition- 
ally been calculated by oneof two methods: high-frequency 
asymptotics, which treats scattering and diffraction as local 
phenomena; or solution of an integral equation for radiat- 
ing sources on (or inside) the scattering body, which cou- 
ples all parts of the body through multiple scattering pro- 
cesses. In this paper we describe a third alternative, the 
direct integration of the differential form of Maxwell’s 
equations in time. 

The time-domain Maxwell equations represent a more 
general form than the frequency-domain Helmholtz equa- 
tions, which are usually restricted to solving scattering 
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problems having time harmonic fields, whereas a time- 
domain approach can handle continuous waves (single fre- 
quency, harmonic)as well as a single-pulse(broad-band fre- 
quency) transient response. Frequency-domain-based 
methods usually provide the radar cross section (RCS) 
response for all angles of incidence at a single frequency, 
while time-domain-based methods provide solutions for 
many frequencies from a single transient calculation. Also, 
in a time-domain approach one can consider time-varying 
material properties for the treatment of active surfaces. 
Using spectral methods, the time-domain transient solu- 
tions can be processed to provide the frequency-domain 
response. 

In the present work, it has been our aim to accurately 
predictthe scattering from bodies that include regionswith 
dielectric and magnetic properties significantly different 
from those of free space. Configurations involving coated 
inlets, composite radar-absorbing airfoils, and multiple lay- 
ers of material are typical of many modern aircraft and mis- 
siles, and their scattering properties often range over sev- 
eral orders of magnitude as a function of incident and 
reflected angles. 

There are manyways onecan solve the time-domain Max- 
well equations numerically [I]-[8]. Most notably, the work 
of Taflove and Umashankar [3]-[6] employs a finite-differ- 
ence method developed by Yee [I]. The approach to be fol- 
lowed in this paper i s  to utilize the numerical algorithms 
that have been proven most successful in integrating the 
time-dependent equations of fluid dynamics, namely, the 
Euler and the Navier-Stokes equations [9]-[la]. Computa- 
tional algorithms tosolve these nonlinear equationsof fluid 
dynamics have progressed rapidly over the last 20 years, 
and many of these computational fluid dynamics (CFD) 
methods are directly applicable to computational electro- 
magnetics (CEM) in solving Maxwell’s equations. Some of 
the attributes of CFD methods that can be employed effec- 
tively to design a time-domain differential solver for Max- 
well’s equations are listed here. 

1) The fluid dynamic equations are usually cast in a con- 
servation form (to be described later) conserving mass, 
momentum, and energyfluxes, thus allowing for numerical 
capture of flow discontinuities such as shocks and slip sur- 
faces. The Maxwell equations also can be cast in a con- 
servation form. In this particular form, they are naturally 
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structured for numerical simulation of scattering from 
objects with layered media having discontinuous or grad- 
ually varying material properties. 

2) Recent developments of hyperbolic algorithms [13]- 
[I81 for solving the time-domain Euler equations are based 
on the characteristic theory of signal propagation and are 
referred to as the "upwind" schemes. For hyperbolic equa- 
tions, the upwind-based schemes can be constructed to 
provide the right amount of numerical dissipation to 
achieve both stability and accuracy of computation. The 
time-domain Maxwell equations, which are hyperbolic in 
character (to be shown later), can also benefit from employ- 
ing such upwind type schemes. 

3) For the treatment of complex aerospace configuration 
geometries, CFD methods usually employ a body-fitted 
coordinate system for easy implementation of boundary 
conditions. Concepts such as numerical grid generation for 

tions in fluid dynamics and the Maxwell equations in elec- 
tromagnetics are two specific examples. In general, many 
equations in mathematical physics naturally lend them- 
selves to a conservation form representation given by 

where the solution vector Q, the source S, and the flux vec- 
tors E, F, and G take on different forms depending o n  the 
physical problem being modeled. In Eq. (I), the subscripts 
t ,  x ,  y ,  and z denote partial derivatives. Implementation of 
Eq. (1) in many realistic problems requires a coordinate 
transformation to properly represent the physical domain 
of interest and to aid in the boundary condition treatment. 

Under the transformation of coordinates implied by 

7 = t ,  

r = m, x, y ,  z) 

t = tu, x, y ,  z), 1) = 1)(t, x, y ,  z), 

Eq. (1)  can be recast in the conservation form given by a body-fitted system, multizoning [Is], adaptive gridding, 
etc., are well suited for CEM, especially when the scatterer 

applied. However, the gridding requirements for a desired 
field resolution may be different for CEM applications (fre- 
quency dependent) from that of CFD needs. Also, CEM 
problems may involve internallexternal layered structures, 

- 
is an aerodynamic object for which the CFD methods are Q, + Ft + 7, + Er = (2) 

= ( Q t t  + Et, + F t y  + Gt,)II, 7 = (Q1l, + 

= (QTr + E r ,  + FS; + C3;YJ, and S = 
where a = Q/J, 
ET, + Fv,  + GvJJ, 
S/J, with J being the Jacobian of the transformation 

req u i r i ng mo re i nvolved m u It izone grid d i ng proced u res. 
4) There are several proven discretizable procedures in 

use in CFD for solving the nonlinear fluid dynamic equa- 
tions. Many discretization concepts, such as finite-differ- 
ence, finite-volume, and finite-element schemes [9]-[17], 
implicit and explicit time-stepping procedures [19], and 
relaxation and approximate factorization techniques [9],  are 
equally applicable to solving the Maxwell equations. 

AN0 METRIC SETUP 

FULL POTENTIAL 
EULER 
NAVIER-STOKES 

TM WAVE 

MAXWELL 
CEM TEWAVE 0 
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PRESSURE, 1 1 CROSS-SECTION, I 1 TEMPERATURE, SURFACE CURRENT, -- 

COMMONALITY 

BODY-FITTED GRID 
* MULTIZONE 
* CHARACTERISTIC UPWIND SCHEMES 
* HYPERBOLIC EQUATIONS IN CONSERVATION FORM 

Fig. 1. Commonality between CEM and CFD. 

In general, many ideas are in common between CEM and 
CFD. This i s  illustrated schematically in Fig. 1. Even the pre- 
and postprocessing graphics packages developed for CFD 
solutions satisfy the needs of CEM. Thus, our approach is  
to utilize the numerical algorithms that have proven most 
successful in integrating the time-dependent equations of 
fluid dynamics to solve Maxwell's equations. 

II. EQUATIONS IN CONSERVATION FORM 

J=-  at, 7, r) 
ax, y ,  z)' 

Fig. 2 schematically illustrates a body-fitted system in two 
dimensions. 

Associating the subscripts j ,  k ,  /wi th the [, 7, (directions, 
a numerical approximation to Eq. (2) may be expressed in 
the semidiscrete conservation law form given by 

( b , , k , I ) r  + ( [ / + 1 / 2 , k , ,  - i / - 1 / 2 , k , / )  

+ ( F , , k + l / 2 , /  - F / , k - 1 1 2 , / )  

+ ( c / . k , / + 1 / 2  - e / . k , / - l i Z )  = s / , k , ,  (3) 

where E ,  e, c a r e  numerical or representative fluxes at the 
bounding sides of the cell for which discrete conservation 
is considered, and a / , k , l  i s  the representative conserved 
quantity (the numerical approximation to a) considered 
conveniently to be the centroidal value. The half-integer 
subscripts denote cell sides and the integer subscripts the 
cell itself or its centroid. Fig. 3 illustrates the nomenclature 
associated with a finite-volume cell. The concept of 
upwinding, to bedescribed subsequently,will beemployed 
in the evaluation of fluxes at interfaces. 

The objective i s  to solve Eq. (3) for the dependent vector 
Q. After the incorporation of proper flux representation, 
the discrete form of Eq. (3) can be written as 

R(Q) = 0. (4) 

If Q is known to lie in the neighborhood of a given state, 
denoted by Q', then the solution to Eq. (4) can be written 
to first order in Q - Q* as 

(5) 

where aR/aQ, in general, i s  a differential operator. Many 
numerical algorithmic issues, such as implicit methods, 

As mentioned in the Introduction, many problems in 
mathematical physics are governed by an appropriate set 
of partial differential equations. The Navier-Stokes equa- 

explicit methods, relaxation schemes, and approximatefac- 
torization procedures, come into play in the modeling of 
the differential operator aR/aQ. Issues such as higher order 
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Fig. 2. S c h e m a t i c  o f  a body-fitted s y s t e m .  

VOLUME CELL 

k - %  
i-% t j + %  

/ I  PHYSICAL COMPUTATIONAL 

j f H, k f H, I f H ARE CELL FACES WHERE FLUXES e, AND 6 ARE EVALUATED 

j,kJ IS CELL CENTROID WHERE IS DEFINED 

Fig. 3. Nomenclature a s s o c i a t e d  with a finite-volume cell. 

accuracy, efficiency, proper upwinding, and treatment of 
discontinuities come into aRlaQ as well as in the modeling 
of the right-hand side R(Q*). 

The objective of this paper i s  to apply CFD-based finite- 
volume numerical methods developed for solving many 
nonlinear gasdynamic equations [9]-[I91 to solve the time- 
dependent Maxwell equations for electromagnetic scat- 
tering problems involving layered material media. 

I 1 1 .  MAXWELL'S EQUATIONS 

Analysis of electromagnetic scattering from permeable 
(dielectric and lossy media) and impermeable (metallic) 
objects i s  of interest in being able to  predict the RCS of low 
observable aerospace configurations. The equations that 
govern the interaction between electric and magnetic fields 
are the Maxwell equations. These equations in their vector 
form are 

aB 
- = - V X &  
a t  

= v x X - 1. 
at 

The vector quantities & = (&x, &,, E,) and X = ( X x ,  Xy, X,) 
are the electric and magnetic field intensities, D = (Dx, D,, 
D,) is  the electric displacement, B = (Bx ,  By ,  6,) is the mag- 
netic induction, and] = Ux,],,],) i s  the current density. The 
subscripts x, y ,  z in the vector representation of E ,  X, B ,  and 
D refer to components in the respective directions. 

In order to apply CFD-based conservation-law form finite- 

volume methods, Eq. (6) i s  rewritten in the form of Eq. (1). 
For isotropic materials, the solution vector Q and the flux 
vectors E ,  f ,  and G are given by 

Q =  

D,lt 

0 

- Dxlt I - B J P  
F =  

O I  0 

E =  

I o .  

, 
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The permittivity coefficient e and the permeability coeffi- 
cient p are the material properties and satisfy the relation- 
ships D = e &  and B = p X .  The current density) i s  usually 
represented by uE, where U i s  the material electrical con- 
ductivity. The objective is to  solve Eq. (7) to predict the elec- 
tromagnetic scattering from objects with layered structure 
for agiven incident field (continuous waveor a pulse). From 
the time variation of the scattered field, the RCS of the scat- 
terer can be obtained. 

IV. CHARACTERISTIC THEORY FOR MAXWELL'S EQUATIONS 

The application of a finite-volume procedure, Eq. (3), for 
the Maxwell equations, Eq. (7), requires the evaluation of 
thevarious fluxes E ,  f ,  and e a t  cell interfaces from the solu- 
tion vector Q known at cell centroids. There are many ways 
one can represent these fluxes, depending on the choice 
of numerical algorithms, such ascentral difference schemes 
and upwind schemes. The choice and construction of a 
numerical algorithm involve many issues, such as accuracy, 
efficiency, numerical stability, storage requirements, and 
treatment of discontinuities in the solution field (shocks in 
fluid dynamics, discontinuous material properties in elec- 
tromagnetics). In CFD, upwind-based methods that take 
into account the theory of characteristic signal propagation 
are widely in use. Some of the background information on 
upwind-based schemes is  provided in [13]-[18]. The objec- 
tive of the present work is to adapt the upwind-based algo- 
rithms of CFD to solve the Maxwell equations. 

First, the character of the Maxwell equations i s  analyzed 
to aid in the development of a proper upwind scheme for 
electromagnetic flux representation. This section provides 
the characteristic theory framework for the one-dimen- 
sional Maxwell equations. 

Consider the following conservation form [one-dimen- 
sional form of Eq. (7 ) ] :  

where 

and the material properties t and p are represented by e = 

I /E  and m = l/p, respectively. 
The character of Eq. (8) i s  described by the eigenvalues 

and the eigenvectors of the Jacobian of € given by A = 

a€/aQ. The eigenvalues of A are first obtained by solving 
] A  - Al l  = 0, 

! 0 -m  0 - B (  

( 0 0  0 0 )  

The eigenvalues of A are A, = -6 = -c, X2 = 0, X3 = 
0, and h4 = c. The quantity c represents the speed of light. 
Since the eigenvalues of A are real, Eq. (8) i s  hyperbolic. 

j + l  

j+x j - U  

CHARACTERISTIC SUBPATHS 
IN PHASE SPACE 

Fig. 4. Numerical flux representation at a cell interface 

Now we construct the numerical flux representation at 
a cell interface. Referring to  Fig. 4 and Eq. (3), the finite-vol- 
ume treatment requires the evaluation of €at cell faces j + 
4 andj  - i, while solving for Qat the cell centroid j. In  order 
to define €at j + $,we first define a piecewise smooth, con- 
tinuous path in phase space, connecting Q, to  Q,+l, made 
up of four subpaths (equaling the number of eigenvalues 
for the one-dimensional Maxwell equations). Along sub- 
path k, the variation of Q is  given by [I81 

(1 0) 

where r, i s  the kth eigenvector corresponding to the k th 
eigenvalue obtained by solving (A - Ak/)rk = 0. 

Referring to Fig. 4, Eq. (IO) defines the solution vector Q 
at the end of each characteristic subpath marked by 1, 2, 
and 3. Starting from the left state QL = Q,, across the neg- 
ative characteristics, the solution vector reaches Q1, then 
becomes Qz and Q3across zero eigenvalue fields, and finally 
reaches the right state QR = Q,+l across the positive char- 
acteristics. 

Performing the integration of Eq. ( IO)  for each charac- 
teristic subpath, the interface electric and magnetic fields 
are given by 

(De), 112 = @,el) 

k,D/ - B p , )  + (C/+lD,+,  + B/+lm/+l)  
(c,/e, + ~ , + ~ / e , + ~ )  

. (11) 

Use of the characteristic subpath integration approach has 
resulted in interface flux representation which properly 
accounts for the variations in material properties t and p 
from one cell ( 1 )  to the neighboring cell ( j  + 1). Also, the 
fluxform of Eq. (Il)guaranteesthatthefluxfieldswill remain 
smooth and continuous across the interface, independent 
of the level of discontinuity in the material property at a cell 
interface. 

- - 
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v. TKANSVEKSt MAGNETIC (TM) AND TRANSVtKSE ELECTKIC 
(TE) WAVE FORMULATION 

The Maxwell equations in threedimensions involve three 
components of the magnetic field ( H x ,  H,, and H,) and three 
components of the electric field ( E x ,  E,, and E,), which are 
coupled. In two dimensions, Maxwell's equations can be 
decoupled into a transverse magnetic (TM) wave and a 
transverse electric (TE) wave. The TM wave contains only E,, 
H,, and H, fields, and TE wave contains only H,, E L ,  and E, 
fields. For algorithm development, the two-dimensional 
Maxwell equations in terms of the T M  and TE wave frame- 
work offer a simplified set of equations without any loss of 
physics of electromagnetic interaction, including material 
properties. 

The TM and TE equations can be written in a unified form 
following Eq. (7), 

Qt + E, + F ,  = S (12) 

where Q i s  a three-element (Q,, Q2, Q,) solution vector, E 
and Fare three-element flux vectors, and S i s  a source vector 
containing electric currents. 

1 )  TM wave: 

Q2 = -D, E 2  = 0 F2 = Q7m S2 = -oQ2e 0 mE, -mtv  0 mv, -mv, 
- 

0 , B =  e q , O  0 Q 3 -  - -D, E3 = -Qlm F ,  = 0 S3 = -aQ3e. (14) A = et, 0 

-etx 0 0 -eqx 0 0 

j + H  

j - a  

. 

0 T FLUX AT (i i HI FACES (BASED ON E? 
0 C FLUX AT (k f H) FACES (BASED ON AI 

CHARACTERISTIC SUBPATHS 
AT AN INTERFACE 

Fig. 5. Characteristics for a two-dimensional finite-volume 

- 
Q -a ,  7, = - eQ,x, 

2 -  I 

The eigenvalues of A and are given by 

= - c m ,  = - c m ,  

X Z / A  = X 2 / B  = 0 

- s  s -1 
I - 

- 5.2 

Any finite-volume-based scheme will require the evalu- 
ation of the flux vector ? (referring to Fig. 5) at the k + cell 
interfaceand f a t  the j  + interface. Using the characteristic 
subpath integration procedure [I81 in the ( E ,  7) plane at k 
+ 1 and in the (7, 7) plane at j + ;, the following interface 

At k + 1, the left state material properties correspond to 
cell k (eL = ek, mL = mk) and the right state corresponds to 
the k + 1 cell (eR = ek+l, mR = m k + , ) .  Also, vector QL = Q k  

and QR = Q k + , .  

F ,  = m(Q2xt + Q3yt) 

F2 = eQlxt 
- 

s2 = r 
- s  

I 
- relationships are obtained. 
F3 = ~ Q I Y ~  (1 5) s3 = 2. 

The TE equations [Eqs. (14)] take on similar forms. 
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In E q s  (18) and (191, o n e  needs t o  m o d e l  the  boundary  cond i t ion  at t h e  ou ter  
boundary  represent ing t h e  far f ie ld in t h e  computa t iona l  
setup. The computat ional  domain  terminates at some f in i te  
distance f r o m  t h e  scatterer, and t h e  domain  is  usually 

a = m, a, = ( Q r x ,  + Q 3 y J  

At I + I, 

A 
where QrQ3rn = ( Q L x E  + Q3y$ and b = m. The 
superscripts L and R refer t o  lef t  and r igh t  states at j + ;, 
shown in  Fig. 5. The quant i t ies ( m r n i a )  and (Q2Q3rn/b) 
represent n x .K1 fo r  t h e  T M  case and n x G fo r  the  TE case. 

VI. BOUNDARY  CONDITION^ 

I\ 

Perfectly Conduct ing  Scattering Surface: For a perfect ly 
conduct ing  scatterer t h e  boundary  cond i t ion  on the  sur- 
face [20] is 

n x G ' = o  (21) 

where  E r  is the  total  electric f ie ld vector and n i s  t h e  surface 
ou tward  normal.  For t h e  T M  case, t h e  boundary  cond i t ion  
[Eq. (21)] becomes G j  = 0, and fo r  t h e  TE case, x tGI  + 

Nonperfect ly Conducting, lsotropic Scatterer: Let G:, X: 
b e  the  total  f ie ld quant i t ies o n  t h e  lef t  side o f  t h e  interface, 
and E L ,  3C; on t h e  r ight  side. The boundary  cond i t ions  at 
the  interface then become (see Fig. 6) 

(22) 

The interface f lux representations given b y  Eqs. (18) and 
(20) strictly satisfythe boundarycond i t ionsg iven b y  Eq. (22). 
The boundary  cond i t ions  at a nonperfect ly conduct ing  
material interface are also te rmed "f lux th rough"  boundary  
condi t ions.  

The key advantage o f  a f in i te-volume procedure,  Eq. (3), 
employ ing  interface f lux representations, Eqs. (18) a n d  (20), 
arrived at th rough t h e  useof  p roper  physical t h e o r y o f  char- 
acteristic signal propagation, i s  that no special boundary  
cond i t ion  t reatment i s  requ i red  t o  enforce cond i t ions  given 
b y  Eq. (22). However, at a perfect ly conduct ing  surface, t h e  
boundary  condi t ions n x E = 0 have t o  b e  expl ic i t ly  sat- 
isfied th rough an  appropr iate procedure.  

Besides t h e  boundary  cond i t ions  at t h e  scatterer surface, 

y g  = 0. 

n x (G: - E;)  = 0, n x (E: - 32;) = 0. 

referred to as "near field." The proper  boundary  cond i t ion  
at t h e  ou ter  boundary  i s  that  t h e  scattered waves smooth ly  
leave the  domain  w i t h o u t  any ref lect ions f r o m  the  artif icial 
outer boundary.  In o u r  work,  characteristic theory  p r in -  
ciples are employed to satisfy t h e  various boundary  con-  
ditions. The m e t h o d  differs in certain essential respects 
f r o m  that presented b y  M u r  [7] and employed b y  Taflove 
and Umashankar [3]-[6]. Details w i l l  b e  given in a fo l low-up 
paper. 

VII. LAY-WENDROFF EXPLICIT SCHEME 

A f in i te-volume procedure  app l ied  to Eq. (2) is g iven b y  
Eq. (3). I f  n + 1 is  t h e  cur ren t  t i m e  level in w h i c h  Eq. (3) i s  
satisfied, an imp l ic i t  scheme w o u l d  treat all t h e  f lux  terms 
at t h e  cur ren t  level and then e m p l o y  some f o r m  o f  a f lux 
l inearization procedure  t o  solve fo r  Q imp l ic i t l y  [15]-[17]. 
The main  advantage o f  such imp l ic i t  techniques in CFD is  
that  they  al low fo r  large t i m e  steps to b e  taken in m o d e l i n g  
t h e  a, te rm w h i l e  ma in ta in ing  numerical  stabil ity. H o w -  
ever, t h e  p r o b l e m  o f  electromagnet ic scattering deals w i t h  
Q and f lux fields that  are h igh ly  osci l latory in both t i m e  a n d  
space. Imp l ic i t  schemes that preserve t h e  inc ident  and scat- 
tered wave prof i les w i t h o u t  any numerical  d is to r t ion  fo r  
large ATareyet to bedeve loped.  In v i e w o f  this,explicit t ype  
schemes that operate w i t h  stabil ity bounds fo r  A r g o v e r n e d  
b y  spatial resolut ion (vo lume o f  a f in i te-volume cell) are 
m o r e  attractive. The disadvantage i s  that  w h e n  clustered 
meshes are used in regions o f  sharp edges and so  on, they  
may restrict t h e  al lowable A7 t o  very small values requ i r ing  
a large n u m b e r  of t i m e  steps to establish t h e  solution. Some 
o f  the  cr i ter ia in t h e  selection o r  cons t ruc t ion  o f  an  expl ic i t  
scheme are 1) spatial and tempora l  accuracy, 2) al lowable 
AT, usually k n o w n  as t h e  Courant-Friedrichs-Lewy (CFL) 
cond i t ion  [19], [21], [22], 3) storage requirements,  and 4) vec- 
tor izabi l i ty  o f  t h e  algor i thm. 

MATERIAL 
INTERFACE 

Fig. 6. Boundary conditions at a nonperfectly conducting interface. 
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One of the explicit schemeswidely in use is  the Lax-Wen- 
droff upwind scheme [21]. Applied to an equation of the 
form 

Q, + F ,  = 0 (23) 

the Lax-Wendroff two-step scheme (predictor-corrector) i s  
given by 

1) Predictor: 

Q" = Q" - A&;+ 112 - FY-112). (24) 

2) Corrector: 

{Q" + Qm - A T ( F ~ ~  - F 3 2 ) }  Qn+' = i 

The predictor step, Eq. (24), i s  only first-order accurate in 
time and space. The corrector step makes the scheme sec- 
ond-order accurate in time and space. The addition of the 
square bracketed term in Eq. (25), evaluated at the nth level, 
makes the scheme second-order accurate spatially, while 
the predictodcorrector two-step procedure provides sec- 
ond-order ti me accuracy. 

Referring to Fig. 4, 

dF:- 112 = Fp- 112 - &1/2 

dFI,1/2 = F, +I12 - F:+112 (26) 

where superscripLs R and L refer to right and left states at 
an interface, and F refers to flux at an interface. In the pres- 
ent method, 

F:_112 = F(Q,, metrics at j - i) 
Fp+112 = F(Q,+I,  metrics at j + 1). (27) 

The Lax-Wendroff scheme being explicit, the allowable 
AT for maintaining numerical stability i s  bounded by the 
CFL condition given by 

AT 
A,,, - 5 2 

AV 

where A,,, i s  the maximum eigenvalue of the Jacobian, 
W d Q .  The condition given by Eq. (28) is for the one-dimen- 
sional equation, Eq. (23). In multidimensions, the value of 
A,,, can be taken to be the sum of A, in all directions [A,,, 
= max((AE/ + IA,1 + (Ar/)].Themaximumeigenvalueusually 
occurs at a cell that has the least volume. 

VI1 I. NEAR-FIELD-TO-FAR-FIELD TRANSFORMATION 

The finite-volume procedure of this paper, which solves 
thetime-dependent Maxwell equations, isapplied in acom- 
putational domain that extends from the scatterer to some 
finite distance away, where it i s  terminated by an outer 
boundary at which nonreflecting boundary conditions are 
imposed. The distance of the outer boundary of the com- 
putational domain i s  controlled by the body size and the 
wavelength of the incident wave, and should be sufficiently 
far away (several wavelengths) where the numerical imple- 
mentation of the nonreflecting boundary conditions holds. 
Even when the computational domain extends to several 

wavelengths from the scatterer, it still represents only the 
near-field solution. However, the bistatic RCS computation 
i s  based on the intensity of the scattered wave at distances 
asymptotically approaching infinity, which means the RCS 
response represents the far-field solution. Using a Green's 
function based asymptotic approach, the far-field repre- 
sentation of the scattered wave is  obtained from the near- 
field computational solution. A similar approach is  also pre- 
sented in [4]. 

In general, the RCS response is desired in the frequency 
domain, whereas the computational solution of this paper 
i s  in the time domain. Of course, the advantage of the time- 
domain approach is  that it can accommodate both contin- 
uous-wave (single-frequency, harmonic) and single-pulse 
(multiple-frequency, broad-band) incident fields. Whether 
the incidentwave isacontinuous harmonicwaveora single 
pulse, the time-domain results of electric and magnetic 
scattered waves are processed using a spectral technique 
toobtain their response in thefrequencydomain. Oncethe 
near-field response is  known in the frequency domain, the 
bistatic RCS response in the far field is computed. For a con- 
tinuous wave representing a single frequency, the spectral 
analysis will provide the response at that given frequency, 
whereas for a pulse case containing many frequencies, the 
spectral analysis allows one to compute the RCS response 
for all frequencies contained in the incident pulse from a 
single time-domain transient calculation. 

Ix. NUMERICAL GRIDDING-BODY-FITTED SYSTEM 

As mentioned in Section II, the Cartesian forms of the 
Maxwell equations are transformed into a body-fitted coor- 
dinate system to allow easy implementation of various 
boundary conditions described in Section VI. Only the 
independent variables x, y, and z are transformed to [, q ,  
and {,and the dependent variables [Q vector in Eqs. (1) and 
(7)] are left in their Cartesian form. 

There are two steps involved in setting up a body-fitted 
coordinate system: 1) definition of the geometry and 2) con- 
struction of the field grid points. As shown in Fig. 2, the 
objective i s  to set up the grid in the domain bounded by 
the body surface (1-2-3) on one side and the outer bound- 
ary (4-5-6) on the other. A cut in the domain, 1-6 and 3-4, 
i s  created to form a four-sided computational domain in 
two dimensions. In three dimensions, the computational 
domain will consist of six boundary surfaces. Given thegrid 
point distribution on the computational boundaries (1-2- 
3 for qmln, 3-4 for [,,,, 4-5-6 for ?I,,,, and 6-1 for C;,,,), the 
interior grid can be constructed in many ways [23], both 
analytical and numerical. The technique followed in this 
paper is based on an elliptic grid solver approach [24], [25] 
in which a set of elliptic Poisson equations i s  solved numer- 
ically to generate the grid in physical space, 

axCE - 2PXC1 + yx,, = -I2(pxt + q x J  

U Y E ~  - @YE, + Y Y , ~  = -J2(py[ + qyl) (29) 

where a = x; + y;, = X ~ X ,  + yty,, and y = xg + y:. The 
right-hand side p = p( { ,  q )  and q = q ( [ ,  q )  are the forcing 
terms designed to satisfy desired constraints imposed on 
the nature of the grid, such as specified grid spacings near 
boundaries and grid intersection angles. J appearing in Eq. 
(29) i s  the Jacobian of the transformation. Details on the 
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construction of p and q forcing terms are given in [24]. The 
objective here i s  to solve Eq. (29) to obtain the ( x ,  y) values 
of a grid in the physical space corresponding to a given 
( t ,  7 )  point in the computational domain. 

In a multizone approach, where each structure of the 
scatterer i s  gridded separately, the elliptic grid solver given 
by Eq. (29) will be applied in each zone. 

X. RESULTS 

Results are presented for both TM and TE two-dimen- 
sional cases. In a time-domain formulation, the incident 
wave can be either continuous (harmonic, single fre- 
quency) or a single pulse (Gaussian, square, etc.). Of course, 
for the computation of a single-pulse transient response, 
the time-domain solver has to be time accurate, and in the 
present formulation, the Lax-Wendroff explicit scheme is  
second-order accurate in both time and space. 

For accuracy, the number of grids points on the scatterer 
to resolve a wavelength of information adequately is taken 
to be on the order of 8 to 15. This means that, for large bod- 
ies(high frequency), the total number of surfacegrid points 
to properly resolve the electric and magnetic field distri- 
bution can be excessive. However, the present formulation 
i s  highly vectorizable and can run efficiently on a super- 
computer. If the incident wave is  a single pulse containing 
many frequencies, the number of grid points on the scat- 
tering surface must be sufficient to resolve the highest fre- 
quency content of the pulse. 

Acontinuous incidentwave is represented by(fortheTM 
case) 

E: = Eo COS k ( x  cos 0 + y sin 0 - cot), k = 2a/h0. 

(30) 

The forms for Hk and H; are automatically obtained from 
Maxwell's equation since the incident fields satisfy Max- 
well's equations in free space, 

E: sin 0 
POCO 

H' = ~ 

where 0 is  the incident angle. Quantities po, co = 1 / 6  
represent free-space values usually normalized to 1 (eo = 
Po = CO = 1). 

-5: I 
0 36 72 108 144 180 216 252 288 324 360 

9 

CIRCULAR CYLINDER 

Fig. 8. Two-dimensional RCS calculations. 

A Gaussian-type incident pulse is represented by 

(32) 

where the parameter a controls the width of the Gaussian. 

E; = ~ ~ ~ - a ~ ( x c o s %  + y s m @  - caA2 

A. TM Cases 

Perfectly Conducting Body in Free Space: For harmonic 
incident fields, the time-domain calculations are carried out 
until the scattered fields reach a time harmohic steady state 
(a few wavelengths of calculation). Then the discrete fast 
Fourier transforms are employed to  obtain the complex field 
representation in the frequency domain. The bistatic RCS 
is  then computed using a near-field-to-far-field contour 
integration. 

Fig. 7 shows plots of surface currents (n x H )  for a square 
cylinder at two different incident angles, and comparisons 

Fig. 7. Surface currents for a perfectly conducting square 
cylinder. 

are made with method of moment (MOM) solutions [4]. 
Finite-difference time-domain results for this geometry 
were first presented by Umashankar and Taflove [4]. In con- 
trast to their regular, rectangular mesh, the required grid 
resolution (at least 10 points per wavelength) i s  maintained 
only on and near the body surface. The grid i s  allowed to  
stretch along the direction leading away from the surface 
(nonuniform grid between the body surface and the outer 
boundary). 

Fig. 8 shows bistatic RCS for a circular cylinder and a 
square cylinder. For accuracy, the contour for RCS evalu- 
ation i s  placed at the centroids of cells neighboring the body 
surface. 

The broad-band frequency response from a single tran- 
sient calculation using a Gaussian-like incident pulse is 
demonstrated in Fig. 9. The calculation is started when the 
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Fig. 9. Transient single-pulse calculations. (a) Surface current in time domain. (b) Surface 
current in frequency domain. (c) RCS in frequency domain. 
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Fig. 10. RCS computation for a conducting cylinder with a dielectric strip. 
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Fig. 11. Effect of lossy coating on RCS. 
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inc ident pulse i s  about  to c o m e  in contact  w i t h  t h e  scatterer 
and is then carried o u t  un t i l  the  scattered fields completely 
leave t h e  vic in i ty o f  t h e  scattering surface. The transient 
response is shown in  terms o f  t h e  surface cur ren t  variation 
along the  b o d y  surface in time, w h i c h  starts as zero  at t = 
Oand gets b a c k t o z e r o a t  some la te r t imeaf te r the t rans ien ts  
vanish. This t ime response is then processed using FFTs to 
get the  f ie ld variation in t h e  frequency domain  fo r  all fre- 
quencies contained in the  incident pulse. Then t h e  bistatic 
RCS as a func t ion  o f  f requency is computed.  

Fig. 10 shows results fo r  a perfect ly conduct ing  cyl inder 
w i t h  a dielectr ic str ip a round it. The electric f ie ld contours  
clearly indicate the  smoothness o f  t h e  contours  at t h e  inter-  
face of free space and dielectric. The characteristic-based 
Riemann solvers employed at a cel l  interface ensure such 
cont inu i ty  and smoothness of electric and magnet ic fluxes. 
The comparisons o f  bistatic cross section and surface cur-  
rents w i t h  exact solut ions are good. 

Fig. 11 showsasimilardielectricstripcalculationwith and 
w i thout  loss. The lossy material behavior is mode led  i n  
terms o f  an imaginary component  t o  t .  The calculation o f  
Fig. 11 for a b o d y  size o f  Ka = 10 used 150 g r i d  points along 
the  b o d y  and 30 points away f r o m  t h e  body. The smallest 
g r id  spacing near the  bodysurface ischosen such that nearly 
100 t ime steps w i l l  p rov ide  a wavelength o f  calculation. 

Fig. 12 shows contours o f  electric scattered f ie ld E: at an 
instant o f  t ime fo r  acircular cyl inder.  The b o d y  a t thecenter  

Fig. 12. Scattered electric field contoursfora perfectlycon- 
ducting cylinder. 

of  the  computat ional  domain  and the  ou ter  boundary  are 
clearly seen. This p lo t  clearly shows that t h e  scattered fields 
leave the  outer boundary  smoothly w i t h o u t  any not iceable 
(spur ious) reflection. The cor respond ing  total  electric f ie ld 
€;contours are shown in  Fig. 13. The shadow region isclearly 
seen. 

Fig. 14 shows t h e  bistatic cross section fo r  t h e  NACA 0012 
air fo i l  at d i f ferent con t ro l  surface settings. The air fo i l  is 10 
wavelengths long and corresponds t o a b o u t  1-CHz inc ident 

Fig. 13. 
ducting cylinder. 

Total electric field contours for a pertectly con- 
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Fig. 14. Scattering from NACA 0012 airfoil 

frequency. The body-f i t ted gr idd ing  fo r  each sett ing is also 
shown in  t h e  f igure.  

B. TECases 

Fig. 15 shows t h e  bistatic RCS for  a perfect ly conduct ing  
cyl inder fo r  various Ka values. The variation o f  U as a func- 
t ion  o f  v iewing  angle is m o r e  pronounced fo r  t h e  TE cases 
than for the  cor respond ing  T M  cases. The computat ional  
results compare verywe l l  w i t h  available exact solut ions [20]. 
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Fig. 15. Two-dimensional TE cases. 

Fig. 16 shows bistatic RCS results for a dielectric cylinder 
( E  = 2.56) of Ka = 1. This case has a drastic RCS variation 
in viewing angle. The forward scattering i s  nearly 0 dB, 
whereas around the looo viewing angle the cross section 
reducesto -60dB. the finite-volumecalculations based on 
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Fig. 16. RCS for a dielectric cylinder having Ka = 1 and E 

= 2.56, TE wave. 
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the present formulation seem to produce very accurate 
results, even for a case having a dynamic range of 60 dB. 

Fig. 17 shows the effect of a dielectric shield over a per- 
fectly conducting cylinder. The present method is  able to 
predictthedetailed bistatic RCS structurewith various nulls 
quiteaccurately. Fig. 18 showsa similarcase, butwith avery 
large dielectric value of E = 100. This calculation was done 
using 10 points per wavelength within the dielectric shield. 
Since the wavelength within the dielectric of E = 100 i s  
1/10 of the free-space wavelength, the grid spacing with the 
dielectric material i s  correspondingly dense, causing the 
allowable Af for stable computation [Eq. (28)] to be much 
smaller than the one used in the computation of Fig. 17. 
Also, the large material value required many cycles of cal- 
culation (nearly 30 cycles) before reaching a time harmonic 
steady state. Construction of an implicit method having an 
unconditional stability on A t  is  presently under develop- 
ment. Such a method will allow for large A t  values to be 
used in advancing the solution to a time harmonic steady 
state. 

On a CRAY-XIMP 14 machine, the present two-dimen- 
sional code takes 1.2 x seconds per time step per grid 
point. A systematic study of the scaling of computer time 
has not been carried out, but a rough proportionality to the 
number of grid points should be observed in both two and 
three dimensions. 

' I  
'I '~ 0 EXACT 

COMPUTATIONAL l -  I 

90 180 270 2 

e IVIEWING ANGLEI 

Fig. 17. 
dielectric shield. 

Bistatic RCS for a perfectly conducting cylinder with (right) and without (left) a 

0 
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Fig. 18. Application of the time-domain solver for a dielec 
tric shield of large E .  

XI. CONCLUSIONS 

A novel time-domain differential solver for Maxwell's 
equations utilizing proven numerical algorithms of CFD has 
been developed and applied to solve the two-dimensional 
transverse magnetic and transverse electric wave equa- 
tions. Some of the salient features of this approach are 

1) Based on physical theory of characteristic signal 
propagation as it has been implemented in proven 
CFD methods 

2) Treatment of layered mediawith discontinuous mate- 
rial properties (lossy and lossless) 

3) Numerical gridding for arbitrary geometry treatment 
4) Near-field-to-far-field transformation to compute RCS 
5) Second-order accurate (time and space) upwind Lax- 

Wendroff explicit scheme 
6) Transient and time harmonic computations 
7) Application of fast Fourier transform to derive fre- 

quency response from time-domain calculation. 

Currently work is under way to extend the two-dimen- 
sional solver to full three-dimensional Maxwell equations 
[26]. Along with the development of a three-dimensional 
Maxwell equation solver, work is progressing on many 
fronts. I n  the algorithm research arena, implicit type 
schemes are being looked at to avoid CFL (stability) restric- 
tions placed on A t  by the explicit schemes. Modeling of 
negative material properties (t < 0) which have significance 
to plasmas and surface polaritons, treatment of thin sheets 
(resistive cards, lossy coatings, etc.) through appropriate 
boundary conditions, incorporation of frequency-depen- 
dent (time-dependent material properties are easily mod- 
eled in a time domain based solver) and nonlinear material 
properties, gridding requirements for large bodies (high 
frequency), higher order nonreflecting far-field outer 
boundary conditions, computer architecture tissues in 
algorithm design (coarse-grain and fine-grain parallel pro- 
cessing), etc., are some of the topics of interest. 

ACKNOWI FDGhIENT 

The authors would like to express their sincere appre- 
ciation to Dr. Sukumar Chakravarthy and Professor Stanley 
Osher for many valuable discussions and to Mr. Barna Bihari 

and M i s s  Kimberly Peppi for their support of computer 
graphics. 

REFERENCES 

K. S. Yee, "Numerical solution of initial boundaryvalue prob- 
lems involving Maxwell's equations in isotropic media," I€€€ 
Trans. Antennas Propagat., vol. AP-14, pp. 302-307, 1966. 
E. K. Miller, A. J .  Poggio, and G. J. Burke, "An integro-differ- 
entia1 equation technique for time-domain analysis of thin- 
wire structures; Part I-The numerical method,'.' /. Comput. 
Phys., vol. 12, p. 24, 1973. 
A. Taflove and K. Umashankar, "A hybrid moment methodl 
finite-difference time domain approach to electromagnetic 
coupling and aperture penetration into complex georne- 
tries," / E € €  Trans. Antennas Propagat., vol. AP-30, pp. 617-627, 

K. Umashankar and A. Taflove, "A novel method to  analyze 
electromagnetic scattering of complex objects," / € E €  Trans. 
Electromag. Compat., vol. EMC-24, pp. 397-405, Nov. 1982. 
A. Tafloveand K. R. Umashankar, "Radar cross section of gen- 
eral three-dimensional scatterers," / € € E  Trans. Electromag. 
Cornpat., vol. EMC-25, pp. 433-440, Nov. 1983. 
-, "The finite-difference time-domain (FD-TD) method for 
electromagnetic scattering and interaction problems," /. 
Electromag. Waves Appl., vol. 1, no. 3, pp. 243-267, 1987. 
G.  Mur, "Absorbing boundary conditions for the finite-dif- 
ference approximation of the time-domain electromagnetic 
field equations," / € € E  Trans. Electromag. Compat., vol. EMC- 

A. C. Cangellaris, C. C. Lin, and K. K. Mei, "Point-matched 
time domain finite element methods for electromagnetic 
radiation and scattering," / € € E  Trans. Antennas Propagat., vol. 

V. Shankar, S. Chakravarthy, and K.-Y. Szema, "Development 
and application of CFD methods to  problems in computa- 
tional science," Workshop on CFD for Aerospace Problems, 
Univ. of Tennessee Space Institute, UTSl Publ. E02-4005-013- 
88, Mar. 7-11, 1988. 
V. Shankar, K.-Y. Szema, and S. Osher, "A conservative type- 
dependent full potential method for the treatment of super- 
sonic flows with embedded subsonic regions," AlAA /., vol. 
23, no. 1, pp. 41-48, 1985. 
V. Shankar, H. Ide, J .  Gorski, and S. Osher, "Afast, time-accu- 
rate unsteady full potential scheme," AlAA I . ,  vol. 25, Feb. 
1987. 
V. Shankar and H. Ide,"Unsteadyfull potential computations 
for complex configurations," presented at the AlAA 25th 
Aerospace Sciences Mtg., Reno, NV, Jan. 1987. 
S.  R. Chakravarthy, D. A. Anderson, and M. D. Salas, "The 
split-coefficient matrix method for hvperbolic systems of gas- 

1982. 

23, pp. 377-382, NOV. 1981. 

AP-35, pp. 1160-1173, Oct. 1987. 

dynamic equations," presented at the AlAA 18th AerosGce 
Sciences Mtg., Pasadena, CA, Jan. 14-16, 1980. 

141 S. R. Chakravarthyand K.-Y. Szema, "An Euler solver for three- 
dimensional supersonic flows with subsonic pockets," pre- 
sented at the AlAA 18th Fluid Dynamics, Plasmadynamics, 
and Lasers Conf., Cincinnati, OH, July 16-18, 1985. 
K.-Y. Szema, S.  R. Chakravarthy, and H. Dresser, "Multizone 
Euler marching technique for flows over multibody config- 
urations," AlAA papers 87-0592, Jan. 1987, and 88-0276, Jan. 
1988. 
S. R. Chakravarthy and D. K. Ota, "Numerical issues in com- 
puting inviscid supersonic flow over conical delta wings," 
presented at the AlAA 24th Aerospace Sciences Mtg., Reno, 
NV, Jan. 6-9, 1986. 
P. L. Roe, "Approximate Riemann solvers, parameter vectors, 
and difference schemes," 1. Comput. Phys., vol. 43, pp. 357- 
372, 1981. 

[I81 S. Osher and S. R. Chakravarthy, "High resolution schemes 
and the entropy conditions," SlAM 1. Numer. Anal., vol. 21, 

P. Lax, "Hyperbolic systems ot conservation laws and the 
mathematical theory of shock waves," SIAM, Philadelphia, 
PA, 1973. 

[20] C. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, 
Radar Cross Section Handbook, vols. 1 and 2. New York, NY: 
Plenum, 1970. 

151 

161 

[I71 

pp. 955-984, Oct. 1984. 
[I91 

720 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 5,  MAY 1989 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 11, 2009 at 21:38 from IEEE Xplore.  Restrictions apply.



R. F. Warming and R. M. Beam, "Upwind second-order dif- 
ference schemes and applications in aerodynamic flows," 
AlAA ]., vol. 14, Sept. 1976. 
R. Courant, K. Friedrichs, and H. Lewy, "On the partial dif- 
ference equations of mathematical physics," I B M / . ,  pp. 215- 
234, Mar. 1967. 
I .  F. Thompson, F. C. Thames, and C. W. Mastin, "Automatic 
numerical generation of body-fitted curvilinear coordinate 
system for field containing any number of arbitrary two- 
dimensional bodies," ], Cornput. Phys., vol. 15, pp. 299-319, 
July 1974. 
I .  L. Steger and R. L .  Sorenson, "Automatic mesh-point clus- 
tering near a boundary in grid generation with elliptic partial 
differential equations,"]. Cornput. Phys., vol. 33, pp. 405-410, 
Dec. 1979. 
V. Shankar and S. Rudy, "Application of a two-dimensional 
grid solver for three-dimensional problems," AIAA]., vol. 23, 
Mar. 1985. 
V. Shankar, W. F .  Hall, and A. Mohammadian, "A three- 
dimensional Maxwell's equation solver for computation of 
scattering from layered media," presented at the 3rd Biennial 
IEEE Conf. on Electromagnetic Field Computation, Bethesda, 
MD, Dec. 12-14, 1988. 

Vijaya Shankar received the M.S. and Ph.D 
degrees in aerospace engineering from 
Iowa State University of Science and Tech- 
nology, Ames, in 1977. 

He i s  Director, Computational Sciences 
Function, of the Rockwell International Sci- 
enceCenter,Thousand Oaks, CA, where he 
conducts and coordinates research in Iin- 
ear and nonlinear mechanics, involving a 
wide variety of problems in mathematical 
physics such as computational fluid 

dynamics and electromagnetic scattering. He has 40 publications 
in the technical literature 

Dr. Shankar i s  a Fellow of the American Institute of Aeronautics 
and Astronautics (AIAA). He was the recipient of the 1975 National 
Student Award and the 1985 Lawrence Sperry Award from AIAA, 
the 1985 Rockwell Engineer of the Year award, the 1985 Outstand- 
ingYoung Alumnus Award from Iowa State University,and the1986 
NASA Medal for Public Service. He i s  Chairman of Rockwell's Fluid 
DynamicsTechnical Panel and Associate Editor of theAIAA/ourna/. 

William. F. Hall received the Ph.D. degree 
in physics from the University of California 
in 1964. 

From 1961 to  1964 his work experience 
entailed preliminary design for guidance, 
navigation, and control systems at North- 
rop Nortronics, PalosVerdes,CA. From 1965 
to the present, he has worked as a Research 
Physicist, Member of Technical Staff, and 
currently Group Leaderatthe Rockwell Sci- 
ence Center. In 1970 he was Coinstructor, 

Mathematical Methods in Research, at Harvey Mudd College, 
Claremont, CA, funded under a Sloan Foundation grant to  explore 

new methods in teaching. He has made significant scientific con- 
tributions in the following areas. 1) Charged-particle scattering in 
crystals: His work with R. E. DeWames and G. W. Lehman was the 
first to point out and evaluate the importance of quantum effects 
in channeling, a phenomenon in which charged particles pene- 
trate a crystal lattice to great depths. In later work, the conditions 
which govern the transition of this phenomenon from quantum 
to classical behavior were established. 2) Properties of magnetic 
systems: He has contributed to the understanding of a wide range 
of phenomena in magnetic systems, including magnetic bubble- 
domain dynamics, surface magnetization near the transition tem- 
perature, and thermal properties of the magnetization in the vicin- 
ity of a magnetic impurity. 3) Viscoelastic effects in polymer solu- 
tions: With R. E .  DeWames and M. C. Shen, he has investigated and 
extended the currently accepted theories of the frequency-depen- 
dent viscosity in polymer solutions, applying these theories to the 
calculation of the relaxation-time spectrum of block copolymers. 
4) Characteristics of compound semiconductor interfaces: He has 
derived a relationship between the current-voltage characteristic 
of a semiconductor heterojunction and the variation in material 
properties in thevicinityof metallurgical interface. In conjunction 
with W. E. Tennant, j .  Cape, and I .  S. Harris, he has developed an 
optical technique for probing the position dependence of the 
bandgap near the interface. In addition to his research in the above 
areas, he has collaborated in the investigation of a number of 
diverse topics, including distributed-feedback lasers, magnetic 
suspension viscosity, dielectric properties of salt solutions, and 
various applications of electromagnetic theory. 

Dr. Hall is a member of the American Physical Society, P i  M u  
Epsilon, and Sigma Pi Sigma, and has 40 publications. 

Alireza H. Mohammadian (Member, IEEE) 
received the engineering degree from the 
University of Tehran in 1971, the M.S. 
degree from Michigan Technological Uni- 
versity, Houghton, in 1976, and the Ph.D. 
degree from the University of Michigan, 
Ann Arbor, in 1980, all in electrical engi- 
neering. 

He worked at Iran Telecommunication 
Research Center (ITRC) from 1971 to  1975, 
ofwhich hespentsixmonthsatNipponTe1- 

egraph & Telephone Public Corporation in lapan. There he con- 
ducted research on microwave propagation in desert areas and 
also statistical analysis of radio refractivity near the ground. In 1980 
he joined the Iranian Telecommunication Manufacturing Com- 
pany (ITMC) as Director of Engineering. From December 1982 to 
August 1983, he was a Postdoctoral Research Associate in the 
Department of Electrical and Electronic Engineering at the Uni- 
versity of Adelaide, Australia, where he was engaged in research 
on the mutual coupling effect in microstrip antenna arrays. Later 
he joined ANTECH Antenna Technologies in Kirkland, Canada, 
where he worked on microwave antennas. In 1984 he became 
Assistant Professor of Electrical and Computer Engineering at the 
University of Michigan, Dearborn. He is  at present with the Rock- 
well International Science Center, Thousand Oaks, CA. His 
research interests include electromagnetic transients, dyadic 
Green's functions, printed antennas, antenna arrays, and electro- 
magnetic interference and compatibility. 

Dr. Mohammadian is a member of Tau Beta Pi and Sigma Xi. 

SHANKAR er al.: TIME-DOMAIN SOLVER FOR ELECTROMAGNETIC SCATTERING 721 

Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 11, 2009 at 21:38 from IEEE Xplore.  Restrictions apply.


