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Analysis of the Electromagnetic Scattering by
Perfectly Conducting Convex Polygonal Cylinders

Mario Lucido, Member, IEEE, Gaetano Panariello, Member, IEEE, and Fulvio Schettino, Member, IEEE

Abstract—An effective method for the analysis of the scattering
by a perfectly conducting convex polygonal cross-section cylinder
is presented. The effectiveness stems from the generalization of the
Neumann series, factorising the right edge behavior of the electro-
magnetic field, thus leading to a quickly convergent method. The
induced currents, the radar cross section (RCS) and the induced
field ratio have been evaluated.

Index Terms—Analytical regularization, cylindrical scatterers,
electromagnetic scattering.

1. INTRODUCTION

HE scattering from metallic cylinders has been widely

studied in the past years [1]-[11] due to its relevance in
electromagnetic theory: radar cross section (RCS) minimization
to reduce electromagnetic coupling, aperture blockage effects
analysis, scattering of radio beams by local buildings, are just
a few examples of applications. Many different approaches,
such as finite elements method (FEM) [8], boundary elements
method (BEM) [9], the geometrical theory of diffraction (GTD)
and the uniform theory of diffraction (UTD) [10], [11], pos-
sibly in conjunction with iterative techniques [12] have been
applied, depending on the complexity of the structure, and on
its electric size. One of the most common approaches, consists
in formulating the problem using either the electric or the mag-
netic field integral equations (EFIE or MFIE), solved by means
of the Method of Moments (MoM) [13]. Unfortunately, two
problems rise: on one hand, at the frequencies corresponding at
the interior resonances of the structure, the matrix obtained by
the MoM is singular, in which case the solution is not unique.
The problem is even worse, due to the unavoidable truncation
of the scattering matrix, leading to an ill-conditioned problem
in a wide range about the resonant frequencies. A possible way
to overcome this drawback is the use of the combined field
integral equation (CFIE), consisting in a linear combination of
EFIE and MFIE, or their augmented version [14]. A compar-
ison of the different methods can be found in [15]. On the other
hand, when dealing with scatterers with edges, the evaluation
of the near-edge currents can be quite difficult because the
currents in proximity of the edges can be singular [16], so that
the numerical solution of the scattering problem by means of
the MoM can become cumbersome. An alternative method,
addressing both the aforementioned problems, is the method of
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analytical regularization (MAR): it consists in either extracting
and analytically inverting the singular part of the fullwave
operator [17], or using a Galerkin scheme with expansion func-
tions factorizing the right edge behavior of the currents. The
Neumann series [17]-[19] is an example of the latter method,
applied to equiangular polygonal cross-section cylinders in
[20], [21], where the regularization of the problem and the
subsequent quick convergence of the method have been pointed
out. Moreover, it has been shown that the problem is well-posed
even at frequencies arbitrarily close to the theoretical internal
resonance frequency of the scatterers [21].

The aim of this paper is the generalization of the Neumann se-
ries to analyze convex irregular polygonal cross-section cylin-
ders. The generalization is needed because for irregular poly-
gons the edge behavior is different at the two edges of a side.

Section II deals with the formulation of the problem in the
most general case of irregular cross-section cylinders. As usual,
for TM incidence the EFIE is used, whilst for TE incidence
the MFIE is preferred. Any other incidence can be built by
means of TM and TE cases [22]. Section III is devoted to the
choice of the expansion functions, generalizing the Neumann
series. Itis shown that a convenient choice is represented by con-
fluent hypergeometric functions, taking place of Bessel func-
tions in the Neumann series. With such a choice the problem
is reduced to the solution of a linear system of algebraic equa-
tions. If the cylinder cross section is convex, the elements of
the scattering matrix are integrals of a single variable. In Sec-
tion IV some numerical results are shown, for different cross
section shapes. After the convergence of the method has been
tested, some comparisons with the literature and with commer-
cial softwares have been performed, with regards to the induced
currents, the bistatic RCS and the induced field ratio (IFR) [4].
Finally, some tests about the theoretical internal frequencies of
the structure have been performed, to show that the use of the
new expansion leads to a well-conditioned problem even at fre-
quencies arbitrarily close to the theoretical internal resonance
frequencies of the scatterers. Two Appendixes have been in-
cluded to remind some relevant properties of confluent hyper-
geometric functions and to derive their Fourier transform.

II. FORMULATION OF THE PROBLEM

Here, the integral equations describing the scattering problem
are derived, starting from the vector potential and operating in
the spectral domain.

In Fig. 1, the cross section of a perfectly conducting cylinder
is plotted: a plane wave impinges onto the cylinder with an angle
¢ with respect to the x axis and orthogonally with respect to
the cylinder axis. A local coordinate system (z;,y;, z) is also
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Fig. 1. Geometry of the problem.
sketched in the figure, with the origin at the centre of the sth sur-
face and the y; axis oriented in the outward direction. If (Z;, ;)
are the coordinates of the midpoint of the +th surface in the co-
ordinate system (z, y), the relation between the coordinate sys-
tems is
{ﬂ?z’(x,y) = (@ —@)cospi+ (y—m)singi
vi(z,y) = —(z — i) sing; + (y — Fi) cos ;.

; being the orientation of the :th surface with respect to the x
axis.

The surface current distribution can, therefore, be written as

ﬂmmﬁd@wZZLm@w) )

where L is the number of faces of the cylinder, J,(x;) is the sur-
face current on the sth surface and the invariance of the struc-
ture with respect to z has been used. The vector potential is then
given by

L
A(z,y) =Y Ai(wiz,y), yi(w,y)) 3)
i=1
where, omitting the dependence from x and y
“+o0o
_
A(wi,y:) = 7 / Ji(20)

XH(SQ) (k (z; —x0)%2 + yf) drg (4)

1 being the magnetic permeability and & being the wavenumber.
By defining the spatial Fourier transform of J,(z;) as
1 b
j' = — J:(x; jum’di 5
L =5 [ L@ ds ©

the potential A;(x;,%;) can be written as

. +o00 400
Ai(xi,yi) = —% / / Hé” <k\/ (x; — ®0)? +y12>

x e ~Iuwo da:oii(u)du (6)
which, by using the relevant integral [23]

+oo
/ HéZ) <k (x; — x0)? + yf) eI d,
67]‘y1| \Z k2 —u? .
LN C)
T2 — 02
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leads to
L Tt s IVEE —u2
Y L e_J|y1| k?—u e
A = 4= J (1) ———x—e"idy. (8
Alz,y) = —j5 ; / Li(w)— e . ®)
In (7) the branch has been chosen as follows:
/12 — 2 — [VEZ — u?| if |u| < k, )
—JIVu? — k2| if |u| > k.

A. TM Incidence

Let us consider an incident plane wave with TM polarization,

namely
Epo(z,y) = Ege i heathoy)z (10)

where k, = —kcos¢ and k;, = —Fksin ¢. The only non van-
ishing component of the electric scattered field is, therefore

EZ(IC7Z/) = _JWAZ(:C/:U)
+

=

=1

— 00

Jiz (1)

e—j|y1|vk2—u2 .
X ———=—e"""idu
L2 — u2
where w is the angular frequency and the induced current is
longitudinal.
By imposing the total electric field to be vanishing on the
cylinder surface, a system of L integral equations can be ob-
tained as

Y

Ez(a:,y)|y7:0 - _ Eoe—j(kwx+kyy)
: y;=0

with j =1,2,... L, 2a; being the width of the jth surface.

|:l?j| S aj (12)

B. TE Incidence

In the case of a TE incidence, the magnetic incident field is
Hipe(,y) = Hoe™/arthun)z (13)

and the only nonvanishing components of the scattered field are
FE.,E,, and H.. In such a case, the induced current is trans-
verse, and the scattered magnetic field can be evaluated as

1
Hz(xay) = ;V X A(xay”z

L
1 0
= Az, (T, Y

+o0o

L
1 -
— 5 s [ o)
=1 oo
x e IlyilVES —u® g=juzi gy, (14)
where the signum function
-1 ift<o0
m(t) = 15
seu(?) {+1 if £>0 (15)

has been introduced.
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By imposing the discontinuity of the tangential component of
the total magnetic field, namely

iox Hoils = Jg (16)

where Jg is the surface current distribution on S and 7 is the
outward normal, a system of L integral equations can again be
obtained

Hz($7y)|y]=0 - Jl"j (xj>

- Hoe_j(kzz+ky?/)

sl < aj
yj:0’|xj| > a5

(17)
with j = 1,2,...L.

III. SOLUTION OF THE PROBLEM

In order to reduce the integral equations systems (12) and
(17) to algebraic systems of linear equations the Galerkin
method can be used. The efficiency of the method is strictly
related to the choice of the set of basis and testing functions.
In order to analytically regularize the problem in the sense out-
lined in the Introduction, the selected functions must factorise
the right edge behavior prescribed by Meixner conditions [16],
improving the convergence of the procedure. For cylinders
with a regular polygonal cross section a suitable choice is the
Neumann series, namely a series of Bessel functions, adopted
in [20] and [21]. In the spatial domain such a series corresponds
to a series of Gegenbauer polynomials, multiplied by their
weighting function. As a consequence, the expansion functions
are orthogonal, and factorise the same (and right) edge behavior
on the two edges of a side. On the other hand, when the angles
associated to a side are different, namely for irregular cylinders,
the edge behavior is different on the two edges. In order to
take into account such a behavior it is necessary to select basis
functions factorising different behaviors on the two edges. A
suitable choice is represented by Jacobi polynomials multiplied
by their weighting functions, namely

PP (2)

wga,m(f):{%(1—5)“(1+f)ﬂ¢7m HES
¢ 0 |z >1
(18)

withn = 0,1,2,....In (18) P{**?(-) is the Jacobi polynomial
of order n,«, 3 > —1 are parameters to be chosen so as to
factorise the right edge behavior of the unknown function, 2c is
the width of the generic face and 5,(la’ﬂ ) is such that

(&

[ afor e

—cC

plss) 24
X n—(x/c) —le 7’1,:0,1727"' (19)
1(161,,3) c
and is given by
Qa+B+1T nr 1
o) _ (ntatDln+5+1) o
n!(2n+a+pf+1I(n+a+pB4+1)

In order to use the functions defined by (18) in a Galerkin
scheme to solve the integral equations derived in the previous
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section, their Fourier transform is needed. It is possible to show
that (see Appendix B)

c

(o, 8)
1 «@ B Pn (x/c) zx
e (1—z/c)*(1+z/c) 7&#’@ e dx

—C

= @D (2ez)"e ™ Fi(n+ B+ 1;2n + a +  + 2;2¢2) (21)

withn =0,1,2... and complex values of z, 1 F'1 (a; b; z) being
the confluent hypergeometric function of first kind, also known
as Kummer function of first kind (see Appendix A) [24]. The
coefficients &, £%) are defined in Appendix B.

In particular, when z = ju with u € R, relation (21) is the
Fourier transform of (18), which will be denoted from now on
by

RO
g

XefjculFl(n_f_/B_{_ 1;2n+a+[3+2;2jcu)

(2jcu)”
(22)

withn = 0,1,2,...

By using the set of functions (18) as testing functions, if the
cross section of the cylinder is a convex polygonal the projection
is also analytical because it can be reduced to the evaluation of
integrals of the kind (21). The system of integral equations in
the TM and TE case, reduce, respectively, to

=L [ o—iFij(u)
ZZJ o (@)
n=0 i=1

X [cﬁﬁ,?j’ﬁj)(ajGij(U))} du

2E0 itk zo 4k *
= o 270 (ke @5 +ky¥5) [@533-7@) (ajkxj)} (23)
+oo L too
S [ IO )
n=0i=1  _1_

x[ ©3:8)) (4, G (u))] du

— 9 H e i(keEstkyT) [@(3]-7,@-) (ajka, )} o
where 7 = 1,2,... L, m is a non negative integer and the star
denotes the complex conjugate.

In (23) and (24) J;, are the expansion coefficients of the cur-
rent on the sth surface and the following substitutions have been
defined

Fi(u) = —Vk* = u?y;(25,9;) + uwi(25,9;) (25)
Gij(u) = VEk? —u?sin(p; — ;) + ucos(p; — ;) (26)
ky; = —kcos(¢ — @;). 27

If N functions are used to approximate the current on each side,
the scattering matrix associated to (23) and (24) is composed by
L? square blocks, each with N2 elements. The block in position
(4, 1) represents the projection of the scattered field produced by
the current distribution on the sth side and evaluated on the jth
side.

In order to choose the values of «; and 3; fort = 1,2,... L
different considerations have to be done for the two incidences.
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A. TM Case

In the TM case, due to Meixner conditions, the longitudinal
component of the current must exhibit an edge behavior given
by

v —m
Z; 2rr—u’)I
Jis(wi) o~ (1 ¥ ;) : (28)

when 1/;1»3E <3m/2andi=1,2,...L, where 1/1;“L is the angle of
the wedge at abscissas x; = £a;. Therefore, in order to factorise
the right edge behavior of the currents, the following choices
have to be done:

(29)
withi = 1,2,...L.

B. TE Case

In the TE case, the current on the :th surface has to be finite
and nonvanishing. On the other hand, from Maxwell equations
one also obtains

0
——H. (z,y) = jweFy,, (z,y) withi=1,2,...L

30
oz, (30)
which, evaluated on the cylinder surface gives
g . Sy
—a—Ji_r, (x;) = jweEy, (x,y)|y,=0 withi=1,2,... L.
5
€29
As a consequence [16]
vE_x
0 ZT; 27:71#;
—iw, (;) ™~ 1F— : 32
o7, 1(:v)mﬁia1< ﬂFai> (32)

when 'glzii < 3m/2and i = 1,2,... L. Therefore, in order to
factorise the right edge behavior of the derivative with respect to
x; of the current density .J;,., (z;), and, therefore, of the electric
field, it has been expanded by using the functions (18) with

(33)
withi = 1,2,...L.

C. Numerical Considerations

The factorization of the right edge behavior of the currents,
and therefore of the fields, leads to fast converging series, so
that only few terms are needed to achieve high accuracy, as it is
shown in the following section.

Onthe otherhand, evenif small matrices are to be evaluated, the
numerical computation of their elements could be cumbersome,
so that much attention has to be paid to the evaluation of the
integrals. As a matter of fact, it is not difficult to verify that
when considering the contributions of two nonadjacent sides,
the integrands decay exponentially so that the integrals are
quickly converging. In fact, the asymptotic behavior of the
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TM incidence
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z
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10*
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1
N
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— side 1 4
=== side 2
""""" side 3
=== side 4
=3
[1]

Fig. 2. Normalized truncation error for a quadrangular cross-section cylinder
witha = X\,b = 3X/5,c = 3X\/4,d = X/2,9 = 70° and for ¢ = 60°. (a)
TM incidence. (b) TE incidence.

integrands Kffrj,,) (u) of (23) and (24) is
KD ) " KD ()
e~ Juzi(T;5,75) olulYi;
= - Poo
ity

[ég«gfnﬁj) (ajue—jsgn(U)(w—w))} "

(aiu)

X (34)

easlusin(ei—g;)]
where n is 0 for TE incidence and 1 for TM incidence,
@Sfé;f’ 1)( -) is the asymptotic behavior of the expansion func-
tions (22), reported in Appendix A, and the function

Yij = vi(Z5, 9;) + ajlsin(pi — ¢;)] <0 (35)
represents the ordinate of the vertex of the jth side closer to the
ith side, in the framework of «¢th side. By simple geometrical
considerations it is easy to recognize that the functions defined
by (34) are exponentially decaying functions whenever consid-
ering nonadjacent sides, in such cases Y;; being less than zero.
In the remaining cases it is convenient to extract the asymptotic
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Fig. 3. Surface current density on an equilateral triangular cross-section
cylinder in the case kd = 3.0 and for different incidence angles. (a) TM
incidence N = 5. (b) TE incidence N = 6. Symbols represent measured data
from [3].

behavior (34) thus obtaining
M

s [z

" K ()| dut RED (M) G6)
where +oo ' ’
R0 = [ [KGD, )
M

+EGD. (—u)] du+O(1/M?). (37)

It is worth noting explicitly that the simple truncation of the inte-
gralin (36) would lead to an error of order O(1/M ). On the other
hand, the integral in (37) can be analytically evaluated as

+oo
[ [KED 0+ KED, (~)]
M

j”}207+ﬂ1+(1j+ﬂj+1

r2nlmleleeP glos B
x eIl BA R0 6D 5, 1)
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Fig. 4. Surface current density on a square cross-section cylinder in the case
kd = 2 and for different incidence angles. (a) TM incidence N = 4. (b) TE
incidence N = 5. Symbols represent measured data from [3].

+ f(l J)(aiaajaM)
+ eI D FED (B 0, M)

eI A (0 (0 B )} (38)
In (38) :{ - } denotes the real part, and the following substitu-
tions have been done
Wi (3,8, M)
Tnty+ DI(m+6+1)
i Zi(y, 6) T (-

v 6_77_ 1,]MZ“(’Y76))

(25a; )7+t [—2jaje*j(sorsoj)]6+1 39)
ZZ.I(’Y76) = xi(jﬁgj) +Jyz(3_7_]7g])
+ri(y)a; — rj(é)aje*j(%*%) (40)
-1 ifv= Qp,
’I”h( ) {_|_1 if v :ﬂh (41)

and the upper sign has to be taken if 0 < ¢; — ¢; < 27, whilst
the lower sign has to be taken if —m < ¢; — ¢; < 7. In (39),
I'(-,-) is the incomplete gamma function [24], which can be
numerically evaluated very efficiently [25].
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Fig. 5. Surface current density for TM incidence on an equilateral triangular
cross-section cylinder for orthogonal incidence. (a) kd = 2.0,N = 5. (b)
kd = 4.0m, N = 10. Dots: data from [5].

IV. NUMERICAL RESULTS

As a first step the convergence of the method has been tested.
In order to evaluate the accuracy improvement when increasing
the number of expansion terms, we introduced for each side the
following normalized truncation error
|Jn+1 = Il

|H inc|
where the norm is the usual euclidean norm. In (42), .Jy and
Jn 41 are the vectors of the expansion coefficients of the cur-
rents evaluated with IV and + 1 terms, respectively. In Fig. 2 the
normalized errors are plotted, for a quadrangular cross-section
cylinder for both TM and TE incidence. The decaying of the co-
efficients is very fast, as with V = 8 it is possible to reconstruct
the unknown current distribution within an accuracy of 1073,
In the following, the same truncation criterion has been adopted
and the number of expansion terms used will be reported in the
figure caption. Note that the first two coefficients for the TE case
are devoted to reconstruct the finite values at edges. It is worth
mentioning that the overall method is not very time consuming:
in the TM case, which is the most time consuming, 8 expansion

e(N) = (42)
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kh=3.0and kd = 10.0
10 T T T T T

RCS /4 (dB)
8
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-180 -135 -90 -45 0 45 90 135 180

kh =3.0 and kd = 10.0
10 T T T T T

RSC /A (dB)

-8 F

-10 L L
-180 135 90 -45 0 45 90 135 180

Fig. 6. Normalized RCS of a rectangular triangular cylinder, with angles ¢ =
0° and ¢ = 5°. (a) TM incidence N = 9. (b) TE incidence N = 12.
Other parameters are kh = 3.0 and kd = 10.0. Dots: CST Microwave Studio
simulated data; Squares and Circles: data from [11].

terms can be evaluated by means of a C code implementing the
numerical procedure outlined in previous Section in 225 s on a
Pentium IV 2 GHz, with 512 MB RAM.

The normalized surface current density behaviors in the case
of an equilateral triangular cross-section cylinder are plotted in
Fig. 3 for different incidence angles, by using only 5 and 6 expan-
sionterms forTM and TE incidence, respectively. InFig. 4 the sur-
face current density behaviors are plotted in the case of a square
cross-section cylinder. In both cases, the agreement with the mea-
surements results reported in [3] by lizuka and Yen is excellent.

In Fig. 5, the current behavior is plotted in the case of TM
incidence when kd = 2.0 and kd = 4.07 in a scale adequate
to compare our results with the ones obtained by Shifman et al.
[5]. They use an hybrid moment method reconstructing the cur-
rent by means of multifilament currents in the region far from
the edges, and by means of a superposition of the eigensolu-
tions of the infinite-wedge problem near the edges. The number
of functions of the two kinds to be used has to be determined
empirically: in the cases plotted in Fig. 5 the authors of [5] used
42 and 132 functions, respectively, to obtain accurate results,
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Magnitude of IFR
T
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either

0 ! I
0 1 2 3

d/r
Fig. 7. Induced field ratio of an equilateral triangular cross section as a
function of the normalized dimension. Squares and dots represent the data
reported in [26]. N = 14 and 18 for IFRy and IFRy, respectively.

Magnitude of IFR

d/r

Fig. 8. Induced field ratio of a square cross-section cylinder as a function of the
normalized dimension. Squares and dots represent the measured data reported
in [4]. N = 14 and 18 for IFRg and IFRy, respectively.

while with our method 5 and 10 expansion terms, respectively,
are sufficient.

The knowledge of the current distribution allows the evalua-
tion of the scattered far field, and hence of parameters such as
the bistatic RCS and the induced field ratio (IFR). In Fig. 6 the
RCS of a triangular cross-section cylinder is plotted for both TM
and TE incidence, for different incidence angles. Our results are
in perfect agreement with those obtained by means of the Uni-
form geometrical theory of diffraction (UTD) in [11] (squares
and circles) and with the simulated data obtained with CST Mi-
crowave Studio (dots).

In Figs. 7 and 8 the IFR g and the IFR  are plotted for an
equilateral triangular cross section and a square cross-section
cylinder, with orthogonal incidence as a function of the side
length. Our results are comparable with the results showed in
[4] and by means of the moment method. It is worth noting
that when using the method proposed in [4] and it is necessary
to impose the field to be vanishing in interior points in order
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TABLE 1
EXPANSION TERMS NECESSARY TO OBTAIN THE CORRECT SURFACE CURRENT
ON AN EQUILATERAL TRIANGULAR CROSS-SECTION CYLINDER, FOR
ORTHOGONAL INCIDENCE. THE THEORETICAL INTERNAL RESONANCE IS AT
d/\ = 2/\/5 = 1.154700538 379 25 [27]

N
I ™ TE
1.00000 7 8
1.20000 7 9
1.15000 7 9
1.15500 7 9
1.15470 9 11

90° . 60° " 30°

2707 300° . 330°

Fig.9. Normalized bistatic RCS (¢ /r) of a quadrilateral cylinder: ka = 3+/2.
Dotted line: results from [28] with 6, 12, and 18 test functions. N = 5.

’90" 60° 30°

o

~i270° 300° T 3300 :

Fig. 10. Normalized bistatic RCS (o /1) of a square cylinder: ka = 2. Dotted
line: results from [28]. N = 5.

Fig. 11. Normalized bistatic RCS (o/r) of a sqare cylinder: ka = 3. Dotted
line: results from [28]. N = 5.

to avoid the internal resonances of the cylinder. Our method
is immune to this problem when using an adequate number of
expansion terms [21]. As an example, in Table I the number
of terms necessary to accurately evaluate the induced current
are reported for an equilateral triangular cross-section cylinder
of side d, when d/\ approaches the first theoretical resonance
(d/X = 2/V/3 [27)).

Finally, in Figs. 9 to 11 the normalized bistatic RCSs of two
quadrilateral cylinders have been evaluated and compared with
the results obtained in [28] by Bolle and Fye. They subdivide
the region exterior to the scatterer into three partially overlap-
ping domains, within each of which complete expansions can
be written, and the “point matching” is applied on a surface
where all expansions are complete and convergent. Fig. 9 clearly
shows that results from [28] tend to our result when increasing
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the number of test points. Figs. 10 and 11 also show a good
agreement in cases ka = 2 and ka = 3.

V. CONCLUSION

In this paper, an effective application of the MoM has been
used in the analysis of the scattering by perfectly conducting
polygonal cylinders. Simulations have demonstrated that a great
reduction of basis functions can be achieved due to the factor-
ization of the right edge behavior of the currents. The method
is therefore very appealing for the analysis of conducting struc-
tures with edges, and will be extended to concave scatterers in
a future work.

APPENDIX A

The confluent hypergeometric function of first kind, or
Kummer function of first kind, with parameters a and b and
argument z is defined as [24]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 54, NO. 4, APRIL 2006

Recalling the generic expansion function defined by (22), we
are interested into real values of the parameters a and b with
b > a > 1/2. In such a case the expansion obtained combining
functions of that kind can be viewed as a generalization of the
Neumann series. In fact, recalling the relation between Bessel
and Kummer functions [24]

Ju(z
V( ) = 1F 1\V
zY 22T(v +1)
it is not difficult to recognize that the generic term of the Neu-
mann series can be written as

e~i%

1
+ 52w+ 1, 2jz> (A.6)

Jn+p(cu) _ j‘"@&pfl/zpfl/?)(cu)
(cu)P 92n+pT (1 + p + 1)&(lp—1/2,p71/2)

n=0,12,... (A7)

Finally, it is worth mentioning the asymptotic behavior of the
expansion functions (22) when z approaches 0 or infinity. In the
first case, they have a zero of order n, while at infinity their
behavior is given by (n = 0,1,2,...)

2w (cu) lul oo G (cu)

Zn
V1 (asb; 2) Z "+“ (b) (A1) o.9) (a?)
T'(a)l(n+ b)z"n! ’ , ' ,
e:l:]ﬂ(n+ﬂ+l)e—gcu edeu
which is always convergent except when b = —n,(n € N). In - L(n 4+ a4+ 1)(2jcu)s+! T D(n+ B+ 1)(2jcu)+1"
such a case, it has a simple pole at b = —n if a # —m or (A.8)
a = —m and m > n(m € N), and is undefined when b =
—n,a = —m. It can also be written, when z approaches infinity,
as APPENDIX B
1F1(a;b;2) The aim of this Appendix is to demonstrate the following
I'(b) relevant result (n = 0,1,2...)
eFimay—a (¥ Fla+n)'(14+a—b+mn) 17 PPy
= — [0) -R . _ @ pgIn LE/C) zZx
F(b — 0,) et TL'F( )F(l +a— b)( Z)n (|Z| ) e / (1 ZE’/C) (1 + I’/C) 75(‘%5) e dx
z,a—b S— 767
i e“z ZF(b—a-l—n)F(l—a-l—n) O(|Z|7S) :57(1“"6)(202)"67”1F1(n+[3—|—1;2n+a+ﬂ+2;262).
Lla) | 4= nT(b-a)l(l-a)z" B.1)

(A2)

where the upper sign has to be chosen when —7/2 < arg(z) <
3w /2 and the lower sign in the case —37/2 < arg(z) < /2.
In (A.2) the remainders are given by

Ia+RI(1+a—b+R)

O™ = T T a - I+ D=7
1 1+2b—4a+2z-2R _
5+ . o(:1?)
(A.3)
" ( T )
s. T(h—a+Sr(1—a+s
=) = T(b— a)T(1 — a)(S + 1)z5
. E —b42a+z-S+ O(|z|1)] . (A

An integral definition of Fj(a;b;2), in the case R{b} >
R{a} > 0, can also be given

1Fi(asb;z)=

1
I'(b)
/Zt[ﬂ 11 tb(l ldt (AS)
I'(b—a)l
0

By using the definition of the Jacobi polynomial [24], the first
side of (B.1) can be written as

1] 3 P (/)

(1-z/c)*(14x/c) R e* da

2me
—C

1
[ s o
=——— | —[(1 =2)" (1 4+ z)""P]e*“dux.
T 9 7rn£ kA €

(B.2)
By iteratively applying the integration by parts, the following

formula can be easily obtained
/ d

—(1

[ gl

-1

_ m)n—l—a(l 4 a:)n—l—ﬁ]ezczdx

1
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m=1 1
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1
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where, being a, 6 > —1, the summation over m vanishes when
evaluated at z = £1. On the other hand, the integral is propor-
tional to the definition (A.5) of the confluent hypergeometric
function, so that (B.1) is readily obtained by setting

(1]

(2]

3

—

[4]

[5

—_

(6]

(71

[8

=

[9

—

[10]

(1]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

20T (n 4+ a+ 1)I(n + B+ 1)

o -
m!l(2n +a+ B+ 2)5,(1&”3)

(B.4)
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