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Abstract—The 2-D TMz field equations are formulated and
implemented in the split-field PML, uniaxial anisotropic PML,
and complex frequency shifted PML using the FDTD method.
In various numerical experiments, computational settings were
varied to study the accuracy of the three PML techniques, using a
simple 2-D vacuum problem. The FDTD implementations were
first validated by comparing with the analytical solution of a
time-harmonic source. All numerical results were then compared
to a large reference field to calculate the reflection error. The
experiments verified that split-field and uniaxial PML have the
same effectiveness in absorbing incident waves, with the uniaxial
PML being more computationally efficient. It was also shown
that the complex frequency shifted PML can achieve the same
efficiency as uniaxial PML. However, both theoretical analysis
and experimental results indicate that complex frequency shifted
PML is not applicable to a 2-D TMz problem.

I. INTRODUCTION

PERFECTLY matched layers (PMLs) are employed in the
finite difference time domain (FDTD) method to absorb

incident waves without reflections, truncating the computa-
tional region needed for simulations. Since the introduction of
the split-field PML technique by Berenger in 1994 [1], many
researchers have worked to improve upon this original method.
The uniaxial PML was introduced in 1995 [2] by Sacks, et. al
by implementing permittivity and permeability as tensors in
Maxwell’s equations, instead of modifying Maxwell’s equa-
tions. It was shown that this PML method is mathematically
equivalent to the original split-field PML [3]. The CFS PML
was introduced in 1996 by Kuzuoglu and Mittra [4]. This
method was introduced in order to force the PML equations
to be causal, by forcing the constitutive parameters to satisfy
the Kramers-Kronig relationships. The CFS PML has been
verified to effectively reduce the reflections in late time or with
elongated grids. In this paper, the three methods are compared
by applying them to an FDTD simulation of a current in free
space.

II. FORMULATION

A. Problem statement

An infinite z-directed current source is radiating in free
space. The current source is suspended in free space as shown
in Figure 1. Maxwell’s equations are solved in a vacuum
medium and the electric and magnetic fields radiating from
the current are calculated. Since there is no variation in the z
direction and there is no magnetic current, Ex = Ey = Hz =

0; the 2-D TMz equations are
∂Hx

∂y
− ∂Hy

∂x
= jωεEz (1)

−∂Ez
∂y

= jωµHx (2)

∂Ez
∂x

= jωµHy (3)

where ε is the permittivity and µ is the permeability of the
simulated space.

Fig. 1. Cross-sectional view of simulated problem. The three PML regions
are indicated I, II and III.

The three PML regions that surround the free space medium
are shown in Figure 1. In these regions, electromagnetic
waves do not necessarily follow Maxwell’s equations, but
instead follow split-field or stretched equations, as derived by
Berenger [1], Chew [5] et. al.

B. Split-field PML
The PML equations were derived from Berenger’s equations

[1], reproduced below. The discretized equations are included
in Appendix 1. The split-field FDTD grid, based on Yee’s
grid [6], is shown in Figure 2.

ε
∂Ezx
∂t

+ σxEzx =
∂Hy

∂x
(4)

ε
∂Ezy
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+ σyEzy = −∂Hx

∂y
(5)

µ
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∂t
+ σ∗xHx = −∂Ezx + Ezy

∂y
(6)
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Fig. 2. Top-right corner of FDTD grid for split-field PML.

µ
∂Hy

∂t
+ σ∗yHy =

∂Ezx + Ezy
∂x

(7)

The electric conductivities of the PML are defined as σx and
σy , while the magnetic conductivities are σx

∗ and σy
∗. Hx

and Hy are the magnetic fields in the PML, and Ezx and Ezy
are Berenger’s electric fields (Ezx + Ezy = Ez). Equations (4)
- (7) are implemented over the regions I, II and III - in the
vacuum, Mawell’s equations are discretized and implemented.
In region I, σx = σ∗x = 0, and in region II, σy = σ∗y = 0. In
region III, σx and σy are defined as above, with σx/ε = σ∗x/µ
and σy/ε = σ∗y /µ. These matching conditions must be satisfied
in order to eliminate reflections.

C. Uniaxial PML

The FDTD update equations are derived from Maxwell’s
equations for a stretched, anisotropic medium, as described
in [3]. In the vacuum region, Maxwell’s equations were im-
plemented, while in the three distinct PML regions, equations
(8) - (10) were used. The implemented update equations are
included in Appendix 2; these are similar to those derived in
[3]. The values of σx and σy are defined the same as for the
split-field PML. The grid used is shown in Figure 3.

Fig. 3. Top-right corner of FDTD grid for uniaxial PML.
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= jωε(1 +
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D. CFS PML

Because the CFS PML is similar to the uniaxial, in that
both make use of stretched coordinates (as opposed to the
split-field formulation), the grid shown in Figure 3 was used.
The update equations for the CFS PML are derived from
Maxwell’s stretched equations, as in [5]. The implemented
update equations are included in Appendix 3; these are similar
to those derived in [7].

1
sx

∂Hx

∂y
− 1
sx

∂Hy

∂x
= jωεEz (11)

− 1
sy

∂Ez
∂y

= jωµHx (12)

1
sx

∂Ez
∂x

= jωµHy (13)

sx = κy +
σx

αx + jωε0
(14)

sy = κy +
σy

αy + jωε0
(15)

The same σ profiles that were used in the uniaxial and split-
field implementations were used with the CFS implementation.
The coefficients sx and sy are defined to stretch the fields in
the PML, forcing it to behave as an anisotropic medium. The
parameters κx, κy , αx, αy are characteristics of the CFS that
are frequency dependent, used to shift the pole of the stretching
constant so that the PML is causal.

III. NUMERICAL RESULTS

The FDTD method is used to solve Maxwell’s equations
iteratively across a grid, then iterating the time step ∆t.
First, the results of the FDTD method were validated by
comparing to an analytical solution. Next, the performance of
the Split-field, Uniaxial, and CFS PMLs were tested. Several
experiments were then performed in order to develop greater
understanding on how the characteristics of each PML affect
performance. Finally, the computational efficiencies of each
method were analyzed.

A. Verification of FDTD Implementation

In order to validate the code and show that it produces
the correct results, a canonical problem with an analytical
solution was chosen first. The radiation from an infinite line
time-harmonic current source of single frequency is a standard
problem and can be found in many electromagnetics textbooks
[8]. For the TMz mode, the analytical solution of the electric
field in the frequency domain is

Ez = −Ie
β2

4ωε
H

(2)
0 (βρ) (16)
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where Ie is the amplitude of the source, β = ω
√
µε is

the wavenumber, ρ is the distance from the source, and
H

(2)
0 (βρ) is the zero order Hankel function of the second

kind evaluated at (βρ). Two important points must be noted:
first, implementing the source in the time domain requires
a gradual amplitude increase starting from 0, rather than a
sudden excitation. If the source is immediately introduced
to the system, unwanted high-frequency components become
apparent, and the result is a slightly distorted waveform. Thus,
the source Jz used is of the form

Jz = Ie(1− e−(t/d))cos(ωt) (17)

where d is some constant which slows the rate of increase;
in the experiments presented, d=20∆t. Secondly, to properly
compare the analytical solution with the numerical results,
phasor notation must be used to transform the solution into
the time domain; that is, the real part of the data produced by
equation (16) must be taken after being multiplied with ejωt.
A plot of all three solutions (analytical, uniaxial and split-field)
are shown in Figure 4.

Fig. 4. Electric Field of all three as a function of distance from the current
source, at 400∆t.

To gauge the accuracy of the results, the relative error 2-
norm was used. If Enumerical is the vector of E-field values
produced by the FDTD code and Eanalytical is the vector of E-
field values produced by equation (16) at the same grid points,
the relative error 2-norm can be computed by the following
expression: (

||Eanalytical − Enumerical||2
||Eanalytical||2

)
(18)

For the 10cm by 10cm square discretized into a 400x400
mesh, the relative error 2-norms for fields along the x-axis
were computed for times after the steady state was reached,
i.e. after the wave reaches the boundary and reflection begins.
Because the fields decay exponentially in the PML, the error
norms were computed without these elements in the vector,
as it would introduce fictitious errors that would otherwise
not exist if the PML was also a vacuum region. The results
of this error calculation are shown in Figure 5.

Fig. 5. Calculated relative error 2-norms for the split-field and uniaxial
FDTD implementations in the vacuum region.

B. Initial Settings and Reference Problem

Over the course of the experiments, several properties of the
PMLs were varied. In each experiment, only one setting was
varied at a time. These settings are described in this section
for future reference.

The domain was 0.15 m x 0.15 m in area, 150 x 150 in cell
count. This implied that ∆x = ∆y = 0.001. Throughout all
the presented simulations, a square grid was used, so ∆x and
∆y are referred to as ∆. The time step used in all simulations
was the optimal time step, calculated by ∆t = ∆√

2c
∼= 2.36 ps,

where c is the speed of light in a vacuum.
The PML thickness was 8 cells on each side. This implied

that the vacuum grid is actually 134 x 134 cells. The PML
conductivities, σx and σy , vary over the PML according to a
polynomial. On the PML/vacuum boundary, the conductivities
are equal to 0, while on the PML/PEC boundary they are at
their maximum value. They are calculated as

σxi = σmax∆x(
i− 1
2npml

)m, i = 1...2npml + 1 (19)

σyi = σmax∆y(
i− 1
2npml

)m, i = 1...2npml + 1 (20)

where npml is the thickness of the PML (here, 8 cells). Note
that the these conductivities are calculated at every half-grid
step, while the field vectors are calculated at alternating half-
grid steps. The value of σmax is 90, while the exponent m is
set to 3.5.

In order to gauge the accuracy of each method, two ref-
erence problems were constructed, one based on the split-
field PML, and one based on the uniaxial PML. All the
characteristics of each respective reference problem are exactly
the same as the appropriate PML problem being analyzed.
However, in the reference problem, the free space area is
increased without adjusting either the spatial or time step.
The reference problem thus is a simulation of an identical
electromagnetic structure in a larger free space area. This
allows us to gauge how much of the field at any point on the
grid is contributed by the source (the correct result), and how
much is reflected by the PML (undesired reflection error). The
reference problem uses a 400 x 400 cell grid (384 x 384 free
space cells, 8 cell thick PML), with ∆ = 0.001 and time step
approximately 2.36 ps. The reflection error is then calculated
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as in [7]. The equation used is

R = 20log10

(
||E(t)− Eref (t)||
||max(Eref (t))||

)
(21)

where E(t) is the electric field generated by the PML simula-
tion at a certain time, Eref (t) is the field of the corresponding
reference problem at this same time. For the split-field PML,
the split-field reference problem is used, while the uniaxial
reference problem is used for analysis with the uniaxial and
CFS PMLs.

For the following numerical tests, a Gaussian pulsed current
was implemented using the following equation:

J = Ae
− (t−t0)2

t2w (22)

where A is the amplitude, tw is the width of the pulse (20∆t,
where ∆t is the length of the time step implemented) and t0
is the center of the pulse (60∆t). The pulse is not centered at
t = 0 in order to reduce the deletrious effects of the pulse’s
DC component.

C. Comparison of Three PMLs

The accuracy of the three PMLs was examined by simulat-
ing each PML with the parameters described in the previous
section. Additionally, the CFS PML has parameters αx = αy
= 0.05 (as in [7]) and κx and κy are given by

κx = κy = 1 + 10(
i− 1
2npml

)m, i = 1...2npml + 1 (23)

as in [9]. Each simulation was run from 0 to 350∆t in
increments of 5∆t. The results of this simulation are shown in
Figure 6, showing the reflection error as calculated above for
each PML method over time. Note that before approximately
110 time steps, the magnitude of relative error is 0, and so
does not appear in the log-scale graph. Once the pulse is
reflected by the boundary, error appears since the pulse sees
a PML boundary instead of a vacuum. This graph shows
that the uniaxial code and split-field codes do in fact give
identical results after the incident wave reaches the PML
boundary, when all simulation settings are the same, verifying
the derivation in [3]. The figure also shows that the CFS PML
exhibits very large reflection error. This is explained in a later
section.

D. Experimental Results

For each experiment, the characteristics described above
were used, while one characteristic was varied. Since the
performance of the PML varies over time, the maximum error
was calculated for time steps from 0 to 350 and the maximum
value of this error over time for each grid size was used and
plotted against the varied characteristic.

1) Time step: The optimal time step was scaled to show
the effects of using a time step greater than or less than the
optimal time step. The results of this simulation are shown in
Figure ??. With a ∆t larger than ∆topt, the FDTD method
is unstable and produce incorrect results. With a ∆t less than
∆topt, a loss in performance is observed. Therefore, ∆t is
shown to be the optimal time step.

Fig. 6. Reflection error over time for the split-field, uniaxial and CFS PML
implementations.

Fig. 7. Maximum reflection error for split-field and uniaxial PMLs vs. time
step.

2) Grid size: Simulations were performed to determine how
the accuracy was affected by the addition of more vacuum
cells. In other words, the distance from the current source
to the PML boundary was incremented without changing any
other parameters in the simulation. With these simulations,
the grid size was decreased until the error compared to the
reference simulation became unreasonably large. Grid size was
also increased until it was apparent that additional cells would
not increase the accuracy of the simulation.

The vacuum grid size was examined at 6, 10, 14, 34, 54, 74,
104, 134, and 164 cells in order to demonstrate how accuracy
is affected. The results are shown in Figure 8. At vacuum grid
sizes down to approximately 50 cells, the error is still less than
-60 dB. The plot also shows that performance enhancement by
increasing the number of cells is limited. As the number of
vacuum cells approaches approximately 120 cells, the added
performance benefits by increasing the grid size are negligible.

3) Grid steps: Simulations were performed to determine
how the step size (∆) affects accuracy. Increasing the grid
step decreases simulation time, but also decreases accuracy.
The grid step size was increased until the error compared to
the reference simulation became unreasonably large, and was
decreased to show that after a certain point, there is only a
small benefit to further decreasing this parameter. Simulations
were performed at a grid area of constant size (0.15 m) with
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Fig. 8. Maximum reflection error for split-field and uniaxial PMLs vs.
number of cells.

∆ being 0.5, 0.6, 0.75, 1, 2, 3, 4, 5, 6, and 10 mm. The
results are shown in Figure 9 - note that the x-axis is in log
scale. This illustrates that at a certain point, further decreases
in the step size do not improve the accuracy. It is evident that
as ∆ increases, the error increases. This should be expected,
since increasing ∆ and holding the grid constant is analogous
to increasing the number of cells examined while holding ∆
constant, as was explored in the previous section.

Fig. 9. Maximum reflection error for split-field and uniaxial PMLs vs. ∆.

4) PML thickness: The thickness of the PML was adjusted
in order to see how large the PML should be before there is
no additional increase in accuracy. The PML thickness was
increased from 2 to 16 in increments of 2 cells.

The results of the error calculations for these PML thick-
nesses is shown in Figure 10. As PML thickness increases,
the error decreases, which aligns with expectations. With less
distance in the PML material between the vacuum and the
PEC backing, one would expect that the field would not decay
as much in the PML, which would cause higher values for
reflection. The plot shows that there is a limit to the benefits
of increasing the PML thickness - when the PML is 12 cells
thick, the error is comparable to that with 14 and 16 cells.

5) PML profile: The two PML implementations have con-
ductivities σx and σy . As shown previously in this paper, these
values vary over the PML. In order to adjust the profiles, the
exponent m can be adjusted. For both PMLs, the value m was
adjusted from 1 to 6, as shown in Figure 11. This demonstrates
that there is an optimal value for m. As in [3], the optimal

Fig. 10. Maximum reflection error for split-field and uniaxial PMLs vs. PML
thickness.

value is close to 3.5. Also, the value σmax is varied from 5 to
100. This shows that an optimal value for σmax in this case
is approximately 10. This is confirmed in [3], which states
a theoretically derived value for σmax = (m+1)/(150π∆

√
εr),

with grid size and value for m calculated as 9.55.

Fig. 11. Maximum reflection error for split-field and uniaxial PMLs vs.
exponent m.

Fig. 12. Maximum reflection error for split-field and uniaxial PMLs vs.
σmax.

E. Comparison of PML Efficiencies

To measure the CPU time used by each method, all three
methods were implemented in Fortran 90 and compiled with
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the maximum optimization feature in MS Visual Studio. All
programs were run on a Dell PC with 2.99 GB of RAM and
an Intel CORE 2Duo CPU (2.40 GHz). Figure 13 shows the
plots of CPU time vs. time steps run; the computing time in
each method increases linearly with the number of time steps.
The Uniaxial and CFS implementations are similar in terms of
computational efficiency, and both are more computationally
efficient than the split-field implementation, which has been
confirmed [2].

Fig. 13. Seconds per calculation for the split-field and uniaxial PML
implementations.

However, by comparing the discretized equations in the
three methods, we find that the difference in computing time
is only caused by the PML regions, since the equations
implemented for vacuum space are all the same. In the
split-field implementation, the exponential function is called
frequently, which is more computationally expensive than
linear calculations. Additionally, it uses two arrays for the Ezx
and Ezy fields, which will also cost extra time. However, the
introduction of auxiliary update variables in the uniaxial and
CFS methods also introduces extra computing time. With the
PML thickness much less than the vacuum dimension, the
efficiency for the three methods should be very close. In fact,
the efficiency is highly dependent on code implementation and
the nature of the problem examined.

F. Notes on CFS in 2-D
The implementation of the CFS in the 2-D TMz problem

showed high reflection errors of approximately -40 dB - much
larger than that exhibited by the split-field and uniaxial PMLs
as shown in Figure 6. It is not an implementation error but an
intrinsic defect of CFS method - it is not applicable to the 2-D
problem. To see this, one can consider the field Hy in region
I. With kx = 1.0 and no auxilliary ψhyz , the equation for
updating Hy reduces to Maxwell’s equation for Hy , which
means the PML in this region does not absorb Hy at all.
To verify this point, we compared the cross section of the
Ez field with a reference simulation (Figure 14) and the CFS
PML (Figure 15). At 300∆t, the field produced by the pulse
is mostly dissipated, as shown in Figure 14. However, after
300 time steps, the CFS PML exhibits very high reflections.
Examining sufficiently long times (observing after the field
has reached the PML boundary), the reflection from regions I
and II are significant.

Fig. 14. Electric field observed at 300∆t with the reference uniaxial
simulation.

Fig. 15. Electric field observed at 300∆t with the CFS implementation.

IV. CONCLUSIONS

Three types of PML absorbing boundaries were constructed
to simulate the fields radiating from an infinite current source
in free space. The solutions were first validated by comparing
with an analytical solution. Numerical comparisons were then
made to show how the three methods differed in accuracy and
computational cost, and to verify results observed in existing
publications. In these studies, the split-field and uniaxial PMLs
are shown to be equivalent in effectiveness of absorbing the in-
cident waves radiated by a Gaussian pulsed current. Simulation
results show that optimal PML performance can be achieved
by adjusting conductivity, PML profile, size, grid size and time
step. Unfortunately, the CFS PML fails in the 2-D problem due
to the nature of the equations. As for efficiency, although the
experimental results show that the uniaxial and CFS PMLs
are better than the split-field formulation, this result is not
conclusive, as computation time is highly dependent on the
nature of the problem being studied and code implementation.
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